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ABSTRACT 
Background: Adult studies have shown that nursing overtime and unit overcrowding is 
associated with increased adverse patient events but there exists little evidence for the Neonatal 
Intensive Care Unit (NICU).  
Objectives: To predict the onset on nosocomial infections and medical accidents in a NICU 
using machine learning models.  
Subjects: Retrospective study on the 7,438 neonates admitted in the CHU de Québec NICU 
(capacity of 51 beds) from 10 April 2008 to 28 March 2013. Daily administrative data on nursing 
overtime hours, total regular hours, number of admissions, patient characteristics, as well as 
information on nosocomial infections and on the timing and type of medical errors were 
retrieved from various hospital-level datasets.  
Methodology: We use a generalized mixed effects regression tree model (GMERT) to elaborate 
predictions trees for the two outcomes. Neonates’ characteristics and daily exposure to 
numerous covariates are used in the model. GMERT is suitable for binary outcomes and is a 
recent extension of the standard tree-based method. The model allows to determine the most 
important predictors.  
Results: DRG severity level, regular hours of work, overtime, admission rates, birth weight and 
occupation rates are the main predictors for both outcomes. On the other hand, gestational 
age, C-Section, multiple births, medical/surgical and number of admissions are poor predictors.  
Conclusion: Prediction trees (predictors and split points) provide a useful management tool to 
prevent undesirable health outcomes in a NICU. 
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INTRODUCTION

Neonatal intensive care units (NICUs) must contend with ever changing caseloads, patient mix and un-
planned admissions (Tucker et al. [1999]). Workforce management is thus challenging and nursing
overtime is often used to meet required nurse-to-patient ratios (Berney and Needleman [2005], Beltempo
et al. [2016]). The increasing use of overtime hours as a labor management strategy has become an im-
portant issue across NICUs in Canada (Canadian Association of Paediatric Health Care Centers [2013])
and elsewhere (Griffiths et al. [2014]). Indeed, nursing overtime has been found by some to be dele-
terious to adult patients’ health (Bae [2013], Lin [2014], Cimiotti et al. [2012], Dorrian et al. [2006],
Trinkoff et al. [2011]), although others have concluded otherwise (Cook et al. [2012], Evans and Kim
[2006], Berney and Needleman [2005, 2006], Duffield et al. [2011]).

The lack of clear evidence linking overtime and patient health may be due to methodological factors
(Bae and Favry [2013], Weinstein et al. [2008]). Indeed, most studies use cross-sectional data and con-
trast health outcomes stemming from heterogeneous units and/or hospitals. Such analyses are likely to
omit important unobserved patient characteristics and unit-specific work arrangements. As for NICUs,
given that the mix of neonatologists, fellows, residents, nurse practitioners, etc. varies greatly across hos-
pitals, singling out the contribution of overtime on the health outcomes of neonates is clearly a difficult
task.

In this paper, we focus on the CHU de Quebec NICU, a tertiary/quaternary referral center with a
51-bed capacity that tends to a population of 1.7 million over a territory of 452,600 km2 in Canada.
Focusing on a single unit removes some of the aforementioned variations in specialty mix across NICUs.
We study the occurrence of health care associated infections and medical incidents/accidents (henceforth
HCAI and MA, respectively) among all neonates admitted to the NICU between April 2008 and March
2013. Daily exposure to overtime and regular hours of work, as well as numerous individual and NICU-
specific covariates are used to predict the onset of the latter two outcomes. The analysis is based upon a
generalized classification and regression tree approach.

DATA

The CHU de Quebec NICU is a Level-III referral center. At the time of the study, a total of 165 registered
nurses were employed in the NICU, of which 68% (n=112) worked 8-hour shifts and 32% (n = 53)
worked on 12-hour shifts. Nurse staffing was determined before each shift according to patient acuity,
planned admissions, and electives procedures/tests. When nurses were deemed in shortage, management
initially turned to available off-duty nurses. Next, a pool of floating nurses was relied upon. Finally, it
resorted to voluntary and mandatory overtime if necessary.

Overtime is defined as all hours worked beyond the regular work schedule (Fédération Interprofes-
sionnelle de la Santé du Québec [2011]).1 Patient characteristics were collected using the hospital clinical
database Med-Echo. It included gestational age, birth weight, sex, Apgar score, multiple pregnancies and
type of delivery. Daily administrative data on overtime and regular hours of work, daily patient census
and number of admissions were collected using the local administrative database Logibec. Information
on HCAI was collected using the local infectious disease database TDR. Finally, information on MA was
retrieved from the Gesrisk database.2

1This occurred whenever a nurse either started her shift earlier than planned or finished later than scheduled. Working beyond
16 consecutive hours per day was forbidden.

2Reporting the information on the timing as well as the type of MA is mandatory.
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All newborns admitted during the study period were included conditional on having spent at least
three days in the NICU. If an infant had more than one episode of bacteremia, these were considered
separate events if they occurred more than 14 days apart. The date of the infection was determined as
that at which the blood culture was obtained.

Descriptive Statistics

The total number of infants admitted in the NICU over our sample period is 7,438. Of those, 1,972 were
omitted since their stay was shorter than three days. The final sample thus includes 5,466 neonates and
represents over 101,621 infant/days over the sample period.3 Table 1 provides the means of the main
variables used in the models. Infants who contracted an infection or suffered a medical accident had
either, or both, a lower gestational age and birth weight, and were more likely to have been delivered
by C-Section (infection). The table also shows that approximately 6.7% (resp. 4.1%) of neonates were
victim of a MA (resp. HCAI). From the NICU’s point of view, the probability of observing a MA or a
HCAI in any given day was 27.6% and 15.4%, respectively. This translates into 0.58% and 0.32% when
computed daily and per neonate. The average length of stay is also considerably longer for neonates with
either a MA or HCAI. In June 2012, management implemented a series interventions aimed at reducing
overtime (Overtime Reform). In particular, it hired 15 full-time registered nurses and converted 10% of
existing positions from 8-hour shifts to 12-hour shifts (Beltempo et al. [2016]). The table shows that
proportionately more MA occurred in the months that followed the reform relative to either the popula-
tion of neonates or to those with a HCAI. The table also shows that regular and overtime hours of work
are positively related to the occurrence of either outcome. The relationship between hours of work and
outcomes is further investigated in Figure 1 in which we depict the (smoothed) daily variations in over-
time and regular hours, respectively. The figure highlights the negative correlation between regular hours
of work and overtime. Further, peaks and troughs almost always mirror one another. The bottom panel
depicts the daily frequencies of HCAI and accidents. Taken together, the three panels provide prima
facie evidence that these events may be loosely related to hours of work. Yet the influence of other vari-
ables needs to be netted out in order to determine the precise link between work schedules and medical
outcomes, if any. It is highly likely that the link between health outcomes, neonates’ characteristics and
work arrangements are fairly complex. Machine learning methods are particularly well-suited to analyze
such complex interactions.

METHOD

Classification and regression trees (CART) are machine-learning methods used to construct decision
trees. A decision tree is a is flowchart-like predictive model in which leaves represent classifications
(outcomes), non-leaf nodes are predictors, and branches represent conjunctions of features that lead to
the classifications. CART models involve selecting the best predictors and determining appropriate split
points (nodes) in each of them.

The data at our disposal present a novel and interesting feature. Indeed, the outcomes (MA/HCAI) are
observed daily at the neonate level, whereas work arrangements and NICU characteristics are observed
daily. Since the time spent in the NICU varies across neonates, our panel dataset is unbalanced. Tradi-
tional CART models are ill-suited to analyze such data. Fortunately, Hajjem et al. [2017] have recently

3The appendix provides further details on the data and statistical tests.
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Table 1 Sample Means
Variable Accident Accident Infection

Infection/
No Yes Yes

NEONATES

Sex (Female=1)(%) 43.84 48.13 43.19
Gestational Age 35.47 32.31 29.81
Weight (Grams) 2556.70 1962.64 1457.69
Apgar > 7 at 5 Min. (%) 88.89 71.78 65.73
C-Section (%) 40.19 54.77 62.91
DRG Severity 2.15 3.13 3.41
First Birth (%) 73.74 78.84 85.45
DRG (% Surgical) 6.35 31.95 32.86
Length of stay (Days) 17.54 55.96 70.87
Overtime Reform (%) 16.42 21.83 15.32

Total (MA/HCAI) 490 274
Neonate Frequency (%) 6.66 4.11
Daily Frequency (%) 27.62 15.44
Daily/Infant Frequency (%) 0.575 0.322

NICU
Daily Admissions 4.32 4.49 4.47
Bed Occupancy 50.19 50.71 50.58
Daily Regular Hours 514.14 538.03 517.13
Daily Overtime Hours 20.80 25.78 26.74

proposed the Generalized Mixed-Effects Regression Tree (GMERT) which is suitable for unbalanced
binary outcomes such as ours. In addition, GMERT allows the inclusion of random effects to account for
neonate-specific unobserved variables that may impact their outcomes. As with most machine learning
methods, the GMERT algorithm splits the sample into three subsets: a learning set, a validation set and
a test set. The appropriate number of leaves is determined by cross-validation. 4 Finally, the dimen-
sionality of the tree is reduced by ranking the predictors according to a so-called variable importance
indicator (VIMP). The VIMP is a normalized score between 0% and 100% and variables with low values
are removed from the tree since they have little predictive power. We thus use GMERT to predict the
binary outcome yit (MA or HCAI) of neonate i during its t-th day in the NICU, conditional on a series
of predictors.

RESULTS

GMERT is used to predict the two outcomes (MA and HCAI) separately. The algorithm is fed the fol-
lowing common set of predictors for both outcomes: (neonate characteristics) weight, gestational age,
mother’s first birth, sex, c-section, twins, Severity of Illness Index (1-4), DRG Surgical/Medical, Apgar
< 7 at 5 min., (NICU characteristics ) bed occupancy, # admissions, Reform. The analysis of MA fur-
ther includes daily regular and overtime hours in the NICU as well as a dummy variable equal to one
if the infant incurred a HCAI prior to the MA. The analysis of HCAI assumes the infection occurred
when results from the blood culture were obtained. Although there is no consensus on the lead time and

4The appendix provides additional details on GMERT.
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sequence of events that may trigger the onset of a HCAI, we include the daily prior three-day moving av-
erage number of regular and overtime hours in the analysis (Regular.Hours.MA3, Overtime.Hours.MA3)
(see (Hugonnet et al. [2007], Polin et al. [2012]). Finally, we include a dummy variable to account for
the occurrence of a MA prior to the HCAI.

It it conceivable that individual characteristics that are unfavorable to the occurrence of a MA/HCAI
may be compensated for by detrimental environmental factors, and vice versa. In addition, the levels
at which the favorable/detrimental factors operate are not know a priori and may in fact interact in a
highly non-linear fashion. Figures 2a and 2b report the main variables found to influence the occurrence
of both outcomes. The predictors are arranged in descending order of importance. While GMERT
includes as many as 15 predictors in each outcome, the algorithm retains only eleven of them when
predicting either MA or HCAI. Furthermore, there are almost as many environmental factors as there are
individual characteristics that play an important role in predicting the occurrence of either outcome. In
fact, regular hours of work and overtime are two of the three most influencial predictors. Regular hours
ranks first in predicting MA and second for HCAI. Not surprisingly, the algorithm identifies birth weight
and gestational age as the main infant-specific drivers of the health outcomes. Predictors that have little
predictive power are omitted in the pruning process as stressed above and do not appear in the figures.
The average relative variable importance is equal to 25.34% in the MA model (dashed line) and 44.84%

in the HCAI model. Figures 2a and 2b identify the main predictor variables in the entire MA and HCAI
trees. Although hours of work and overtime stand out as the main variables, it does not necessarily follow
that the main split nodes occur along these predictors. We investigate this issue further by focusing on the
prediction trees for MA and HCAI as exhibited in Figures 3 and 4, respectively. The first number inside
each node corresponds to the predicted probability of reaching the latter.5 The number of observations
(n) in appears just below the node. Finally, the splitting values appear in bold characters below the nodes.
To ease reading, paths that lead to high probabilities of adverse outcomes are emphasized (> 75%).

The MA tree is illustrated in Figure 3. It contains 32 leaves. The primary split occurs with respect
to the DRG severity level. Thus neonates who were deemed as having a “High” or below DRG appear
on the main left-hand side branch. Those with a “Very High” DRG are located on the right-hand side
branch. The second split involves Medical/Surgical intervention (left) and infection prior to the MA
(right). Hence the first two levels involve neonate-specific factors. The ensuing paths involve a mixture
of neonate and NICU specific factors. The tree contains six left-hand paths which likely lead to a MA and
as many as seven on the right-hand side. The paths show different combinations of predictor variables
and different split thresholds.

The HCAI tree is illustrated in Figure 4. It contains 31 leaves. The primary split occurs with respect
to birth weight at a threshold of 1195 grams. The second level splits occur on the left-hand side with
respect to DRG severity level (Low/Medium), and with respect of regular hours of work (threshold equal
to 618) on the right-hand side. The tree depicts thirteen paths which likely lead to a HCAI, seven on the
left-hand side and six on the right-hand.

While MA and HCAI are relatively rare events at the neonate/day level, the classification trees de-
picted in Figures 3 and 4 manage to identify the routes through which these are likely to occur. In addi-
tion, the split nodes and their thresholds values are sensical and provide useful guidance to management
when designing policies to mitigate these deleterious outcomes.

The GMERT algorithm manages to unearth two important features of the data. First, surprisingly,

5To save on space, probabilities smaller than 1% appear as "0" inside the nodes.
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it shows that institutional features are just as important drivers as neonate-specific medical conditions
in predicting MA and HCAI, and hence within the grasp of management. Second, traditional statistical
analyses are assuredly incapable of identifying the highly non-linear relations between these predictors.

CONCLUSION
Predicting HCAI or accidents in a NICU is a complex task. Recent machine learning algorithms are
well-suited to unearth potential correlations as they now allow to account for unbalanced panel data
and discrete health outcomes, two frequent features of clinical data. Prediction trees are now relatively
widespread in empirical research and are integrated in many software suites. From an operational point
of view, prediction trees can complement traditional management tools in preventing undesirable health
outcomes in the NICU.
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Figure 1 Smoothed Daily Variations in Nursing
Hours of Work, and NICU Daily # of HCAI and
Nosocomial Infections
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Figure 2 Relative Variable importance (%)
Generalized Mixed-Effect Regression Trees
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Figure 3 Generalized Mixed-Effects Regression Tree - Accidents
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Figure 4 Generalized Mixed-Effects Regression Tree - Infections
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APPENDIX

Generalized mixed effects regression tree with random intercept

As stated above, Hajjem et al. [2014] have proposed a mixed effects regression tree (MERT) method.
It can appropriately deal with the possible random effects of observation-level covariates and can split
observations within clusters since observation-level covariates are candidates in the splitting process.
The main idea is to fit a tree after removing the random effects part of the model, update the estimates
(or predictions) of the random effect and cycle until convergence. But MERT is designed for Gaussian
response data. More recently, Hajjem et al. [2017] have proposed a tree based method, named “gen-
eralized mixed effects regression tree” (GMERT), which is suitable for non-Gaussian data (e.g., binary
outcomes and count data). Following the steps of the generalized linear mixed models (GLMMs), the
GMERT method can handle unbalanced clusters, and can incorporate observation-level covariates and
their potential random effects. It allows observations within clusters to be split. For an unbalanced panel
data set of infants (i = 1, ..., N) followed during Ti days (t = 1, ..., Ti), let yit be the binary outcome
variable and Xit, the (1×K) vector of predictors. GMERT method includes random individual specific
effects and starts with a logistic-mixed model

y | β, u ∼ Bernoulli
(

logit−1
(
Xβ + Zu

))
where the notation y ∼ Bernoulli (p) is shorthand for the entries of y having independent Bernoulli
distributions with parameters corresponding to the entries of p and logit−1 (x) is shorthand for the logistic
distribution ex/(1+ex). y is the (T×1) vector of binary outcomes,X is an (T×K) matrix of covariates,
Z is an (T × NK) block-diagonal matrix of the Xi submatrices where T =

∑N
i=1 Ti. X and Z are

called the fixed and random effects design matrices associated with β and u, the (K × 1) fixed effects
and (NK × 1) random effects vectors. Xit,1 is the intercept and Xit,j , 2 ≤ j ≤ K are the other control
covariates. The random intercept is defined by the sum (β1 + ui,1), the random slope for variable Xi,2 is
the sum (β2 + ui,2), etc.

In our specific case, we only consider random intercept (i.e., ui,j = 0, ∀j > 1). So, Z is restricted
to an (T ×N) block-diagonal matrix of N subvectors (T × 1) of ones. Then, the GMERT reduces to a
generalized mixed effects regression tree with random intercept (GMERT-RI). In the GMERT, proposed
by Hajjem et al. [2017], the linear fixed partXβ is replaced by a function f (X) which is estimated using
a standard regression tree design (STD).6 The overall data set is divided into three subsets: a learning
subset, a validation subset and a test subset (corresponding respectively to 40%, 40% and 20% of the
initial dataset).

A standard tree design (STD) — that does not account for random specific effects — is generally
adjusted using the dataset resulting from the merge of the learning and validation subsets. To choose
the right number of leaves, one proceeds by cross validation. We estimate the tree’s performance by
10-block cross-validation for each level of relevant simplification. The complexity of the decision tree is
defined as the number of splits in the tree and the complexity parameter (CP) is used to control the size
of the decision tree and to select the optimal tree size. A good choice of CP for pruning the tree is often
the leftmost value for which the cross-validation error (i.e., the rate of misclassifications relative to the
original score) lies below the “horizontal line”.7 Here, GMERT-RI is adjusted using the learning subset,
6The GMERT algorithm is detailed below. The R codes are available in the supplementary material of Hajjem et al. [2017]
7which represents the highest cross validation error less than the sum of the minimum cross validation error and the standard
deviation of the error on that tree.
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and then validated using the validation subset, i.e. the best GMERT-RI is selected based on minimum
misclassification rate (MCR) observed on the validation subset.8 The GMERT algorithm of Hajjem et al.
[2017] is detailled below.

To select variables and reduce dimensionality, we can rank the predictors by some measure of im-
portance and remove variables with low rank. Variable importance (VIMP) was originally defined using
a measure involving surrogate variables (see for instance Hastie et al. [2009]). VIMP is calculated for
each variable individually and the value is calculated as the sum of the decrease in impurity9, it counts
both when the variable appear as a primary split and when it appears as a surrogate. The relative variable
importance is a number between 0 and 100%. For each variable, it is the VIMP of this variable divided
by the maximum VIMP among all the variables. Then it is transformed into percentage scoring, the
highest values as 100 and consecutively proportional until the lower values.

The GMERT algorithm

Recall that for the generalized mixed model (GLMM),

• yit | ui belongs to the exponential family of distribution.

• µit = E [yit | ui] and g (µit) = ηit = Xitβ + Zitui for some known link function g. In our case,
we use the logit link. µit = eηit

1+eηit and g (µit) = log
(

µit
1−µit

)
= ηit. So, µi = E [yi | ui] and

g (µi) = ηi = Xiβ + Ziui with ui ∼ N (0,Σ).

• Cov [yi | ui] = σ2v (µi) where σ2 is a dispersion parameter and v (µi) = diag [vi1, ..., viTi ] =

diag [v (µi1) , ..., v (µiTi)] where v (.) is a known variance function.

The generalized mixed effects regression tree (GMERT) model, proposed by Hajjem et al. [2014], can
be written as ηi = f (Xi) + Ziui with ui ∼ N (0,Σ) where the linear fixed part Xiβ is replaced by
the function f (Xi) that will be estimated with a standard regression tree model. A first-order Taylor-
series expansion yields the linearized response variable, ỹi = g (µi) + (yi − µi) g′ (µi) and the mixed
fixed effect regression tree (MERT) pseudo-model is defined as follows: ỹi = f (Xi) + Ziui + ei.
The GMERT algorithm is basically the penalized quasi-likelihood (PQL) algorithm used to fit GLMMs
where the weighted linear mixed effects (LME) pseudo-model is replaced by a weighted MERT pseudo-
model. Therefore, the fixed-part f (Xi) is estimated with a standard regression tree model. The GMERT
algorithm of Hajjem et al. [2017] is the following:

8The misclassification rate (MCR) is given by MCR =

(∑N(v)

i=1

∑T
(v)
i
t=1 | yit − ŷit |

)
/T (v) where ŷit =(

1 + exp
(
−f̂(X ′it)− Z′itûi

))−1

. ŷit is the predicted probability that yit = 1. f̂(X ′it) is the predicted fixed compo-

nent that results from the tree and Z′itûi is its predicted random part corresponding to its cluster. N (v) is the number of
clusters in the validation set, T (v)

i is the size of cluster i and T (v) is the total number of observations in the validation set.
9Gini impurity is a measure of how often a randomly chosen element from the set would be incorrectly labeled if it was
randomly labeled according to the distribution of labels in the subset. The Gini impurity can be computed by summing the
probability pi of an item with label i being chosen times the probability (1 − pi) of a mistake in categorizing that item. To
compute Gini impurity IG for a set of items with J classes, suppose i ∈ {1, 2, ..., J} and let pi be the fraction of items labeled
with class i, then IG = 1−

∑J
i=1 p

2
i . In our case, J = 2 for accident (1) and no accident (0).
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ALGORITHM 1. GMERT ALGORITHM (see Hajjem et al. [2017], p. 115):

1. Initialization step. Set D = 0. Initialize mean values µ̂(0)it , t = 1, ..., Ti and fit a weighted lin-

ear mixed effect (LME) pseudo-model using the linearized pseudo-responses, ỹ(0)i = g
(
µ̂
(0)
i

)
+(

yi − µ̂(0)i
)
g′
(
µ̂
(0)
i

)
. Define the weights,W (0)

i = diag
(
w

(0)
it

)
wherew0

it =

(
vitg

′
(
µ̂
(0)
it

)2)−1
.

Set d = 1 and let σ̂2(0) and Σ̂(0) be the estimates of this weighted LME pseudo-model.

2. Outer loop. While non-convergence of η̂i, do:

2.1. Inner loop. While non-convergence of the generalized log-likelihood (GLL), set d = d+ 1

and do:

2.1.1. Update f̂ (Xi) and ui using

2.1.1.1. ỹ∗i,(d) = ỹ
(D)
i − Ziûi,(d−1),

2.1.1.2. Let f̂(d) (Xi) be an estimate of f (Xi) obtained from a standard regression tree al-
gorithm with ỹ∗i,(d) as responses, Xi as covariates and Wi as weights, i = 1, ..., Ti,

2.1.1.3. ûi,(d) = Σ̂(d−1)

(
W

1
2
(D)

i Zi

)′
V̂ −1i,(d−1)

(
W

1
2
(D)

i ỹ
(D)
i −W

1
2
(D)

i f̂(d) (Xi)

)
where

V̂i,(d−1) = W
1
2
(D)

i ZiΣ̂(d−1)

(
W

1
2
(D)

i Zi

)′
+ σ̂2(d−1)ITi , i = 1, ..., N.

2.1.2. Update the σ̂2 and Σ̂ using

σ̂2(d) =
1

NT

N∑
i=1

(
ε̂′i,(d)ε̂i,(d) + σ̂2(d−1)

[
Ti − σ̂2(d−1)Trace

(
V̂i,(d−1)

)])

Σ̂(d) =
1

N

N∑
i=1

(
ûi,(d)û

R′

i,(d) +

[
Σ̂(d−1) − Σ̂(d−1)

(
W

1
2
(D)

i Zi

)′
V̂ −1i,(d−1)W

1
2
(D)

i ZiΣ̂(d−1)

])

where ε̂i,(d) = W
1
2
(D)

i

(
ỹ
(D)
i − f̂(d) (Xi)− Ziûi,(d)

)
.

2.1.3. Update the generalized log-likelihood (GLL) value using

GLL (f (X,u | y)) =

N∑
i=1

{
ε̂′i,(d)

(
σ̂2(d)ITi

)−1
ε̂i,(d) +

ûR
′

i,(d)

(
Σ̂(d)

)−1
ûi,(d) + log | Σ̂(d) | + log | σ̂2(d)ITi |

}
3. Updating step. Set D = D + 1. Update η̂i, µ̂i, ỹi, wit and Wi using η̂(D)

i = f̂d (Xi) + Ziûi,(d),

µ̂
(D)
i = g−1

(
η̂
(D)
i

)
=
(

1 + exp(−η̂(D)
i )

)−1
, ỹ(D)
i = g

(
µ̃
(D)
i

)
+
(
yi − µ̃(D)

i

)
g′
(
µ̃
(D)
i

)
,w(D)

it =(
vitg

′
(
µ̂
(D)
it

)2)−1
and W (D)

i = diag
(
w

(D)
it

)
.

As shown by Hajjem et al. [2017], the GMERT model can predicted the response for two categories
of new observations: one that belongs to a cluster included (resp. not included) in the sample used
to fit the model. To predict the response for a new observation from the first category, one uses
both its corresponding fixed component prediction f̂ (Xi) and the predicted random part Ziûi
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corresponding to its cluster. This is a cluster-specific estimate. For a new observation from the
second category, one can only uses its corresponding fixed component prediction (i.e., the random
part is set to 0).
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