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ABSTRACT 
We study the estimation of peer effects through social networks when researchers do not 
observe the entire network structure. Special cases include sampled networks, censored 
networks, misclassified links, and aggregated relational data. We assume that researchers can 
obtain a consistent estimator of the distribution of the network. We show that this assumption 
is sufficient for estimating peer effects using a linearin-means model. We provide an empirical 
application to the study of peer effects on students academic achievement using the widely 
used Add Health database and show that network data errors have a first-order downward bias 
on estimated peer effects. 
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1 Introduction

There is a large and growing literature on the impact of peer effects in social networks.1

However, since eliciting network data is expensive (Breza et al., 2020), relatively few

data sets contain comprehensive network information, and existing ones are prone

to data errors. Despite some recent contributions, existing methodologies for the

estimation of peer effects with incomplete or erroneous network data either focus on

a specific kind of sampling or errors, or they are highly computationally demanding.

In this paper, we propose a unifying framework that allows for the estimation

of peer effects under the widely used linear-in-means model (e.g. Manski (1993);

Bramoullé et al. (2009)) when the researcher does not observe the entire network

structure. Our methodology is computationally attractive and flexible enough to

cover cases in which, for example, network data are sampled (Chandrasekhar and

Lewis, 2011; Liu, 2013), censored (Griffith, 2019), missclassified (Hardy et al., 2019;

Lewbel et al., 2019), or summarized by aggregated relational data (ARD; Breza et al.

(2020); Alidaee et al. (2020)). Our central assumption is that the researcher is able

to estimate a network formation model using some partial information about the

network structure. Leveraging recent contributions on the estimation of network

formation models, we show that this assumption is sufficient to identify and estimate

peer effects.

We propose two estimators. First, we present a computationally attractive esti-

mator based on a simulated generalized method of moment (SGMM). The moments

are built using draws from the (estimated) network formation model. We study the

finite sample properties of our SGMM estimator in the context of ARD using Monte

Carlo simulations. We show that the estimator performs very well when the distribu-

tion of the true network is relatively informative about the realized network structure

in the data. Second, we present a flexible Bayesian estimator allowing to exploit the
1For recent reviews, see Boucher and Fortin (2016), Bramoullé et al. (2020), Breza (2016), and

De Paula (2017).
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entire structure of the data generating process. Although the computational cost is

greater, we exploit recent computational advances in the literature (e.g. Mele (2017);

Hsieh et al. (2019)) and show that the estimator can be successfully implemented on

common-sized data sets. In particular, we use our estimator to study peer effects on

academic achievement using the widely used Add Health database. We find that data

errors have first-order downward bias on the estimated endogenous effect.

Our SGMM estimator is inspired by the literature on error-in-variable models

with repeated observations.2 Using a network formation model, we obtain a consis-

tent estimator of the distribution of the true network. We then use this estimated

distribution to obtain different draws from the distribution of the network. Our mo-

ment condition can be seen as a biased-corrected version of the instrumental strategy

proposed by Bramoullé et al. (2009), in which we substitute the true network with

the draws from the estimated distribution. We show that our moment conditions are

asymptotically valid for any fixed number of draws from the estimated distribution

of the network. This property implies a significant reduction in the computational

cost of the method, compared to methods based on the integration of the moment

conditions (e.g. Chandrasekhar and Lewis (2011)).

Importantly, our SGMM strategy requires only the (partial) observation of a sin-

gle cross-section, as opposed to, for example, the approach of Zhang (2020). This

feature is due to two main properties of the model. First, we can consistently esti-

mate the distribution of the mismeasured variable (i.e. the network) using a single

(partial) observation of the variable. Second, in the absence of measurement error,

valid instruments for the endogenous peer variable are available (Bramoullé et al.,

2009).

We explore the finite sample properties of our instrumental variable estimator

using Monte Carlo simulations. We consider the case in which the researcher only

has access to aggregated relational data (ARD). In particular, we show that our
2See Bound et al. (2001) for a review and Chen et al. (2011) for a review focused on nonlinear

models.
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SGMM estimator can be successfully combined with the network formation estimators

proposed by Breza et al. (2020) and Alidaee et al. (2020). As long as ARD are

sufficiently informative in regard to the linking probabilities, our SGMM estimator

successfully recovers the model’s parameters.

Our Bayesian estimator is based on the likelihood and therefore uses more infor-

mation about the structure of the model, leading to more precise estimates. In the

context of this estimator, the estimated distribution for the network acts as a prior

distribution, and the inferred network structure is updated through a Markov chain

Monte Carlo (MCMC) algorithm. Our approach relies on data augmentation (Tan-

ner and Wong, 1987), which treats the network as an additional set of parameters

to be estimated. This approach saves us from integrating over the 2N(N−1) potential

networks compatible with the data, which would create an important computational

issue. In particular, our MCMC builds on recent developments from the empirical

literature on network formation (e.g. Mele (2017); Hsieh et al. (2019, 2020)). We

show that the computational cost of our estimator is reasonable and that it can easily

be applied to standard data sets.

We study the impact of errors in adolescents’ friendship network data for the

estimation of peer effects in education (Calvó-Armengol et al., 2009). We show that

the widely used Add Health database features many missing links—around 30% of the

within-school friendship nominations are coded with error—and that these data errors

strongly bias the estimated peer effects. Specifically, we estimate a model of peer

effects on students’ academic achievement. Our Bayesian estimator probabilistically

reconstructs the missing links, and we obtain a consistent estimator of peer effects.

The bias due to data errors is qualitatively important. Our estimated endogenous

peer effect coefficient is 1.6 times larger than the one obtained by assuming that the

data contains no errors.
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Related Literature

This paper contributes to the recent literature on the estimation of peer effects when

the network is either not entirely observed or is observed with noise. In particular,

our framework is valid when network data are either sampled, censored, misclassified,

or consist of aggregate relational data.3 We unify these strands in the literature and

provide a flexible and computationally tractable framework for estimating peer effects

with incomplete or erroneous network data.

Sampled networks and censoring: Chandrasekhar and Lewis (2011) show that

models estimated using sampled networks are generally biased. They propose an

analytical correction as well as a two-step general method of moment (GMM) esti-

mator. Liu (2013) shows that when the interaction matrix is not row-normalized,

instrumental variable estimators based on an out-degree distribution are valid, even

with sampled networks. Hsieh et al. (2018) focus on a regression model that depends

on global network statistics. They propose analytical corrections to account for non-

random sampling of the network (see also Chen et al. (2013)). Thirkettle (2019)

also focuses on global network statistics, assuming that the researcher only observes

a random sample of links. Using a structural network formation model, he derives

bounds on the identified set for both the network formation model and the network

statistic of interest. Finally, Zhang (2020) studies program evaluation in a context in

which networks are locally sampled and affected by a single type measurement error

(either false positives or false negatives, but not both). Assuming that the researcher

has access to two measurements of the network for each sampled unit, she presents a

nonparametric estimator of the treatment and spillover effects.

Relatedly, Griffith (2019) explores the impact of imposing an upper bound to

the number of links when eliciting network data, e.g. “Name your five best friends.”

He shows, analytically and through simulations, that these bounds may bias the
3For related literature that studies the estimation of peer effects when researchers have no network

data, see Manresa (2016); De Paula et al. (2018a); Souza (2014); Lewbel et al. (2019).
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estimates significantly. He presents a bias-correction method and explores the impact

of censoring using two empirical applications. He finds that censoring underestimates

peer effects.

We contribute to this literature by proposing two simple and flexible estimators

for the estimation of peer effects based on the linear-in-means model (as opposed to

network statistics as in Hsieh and Lee (2016) and Thirkettle (2019)). Our estima-

tors do not require many observations of the sampled network (contrary to Zhang

(2020)). Similar to Griffith (2019), we find—using the Add Health database—that

sampling leads to an underestimation of peer effects, although we find that censoring

has negligible impact in the context of peer effects on academic achievement.

Our Bayesian estimator is similar in spirit to the two-stage GMM estimator pro-

posed by Chandrasekhar and Lewis (2011), but it is computationally advantageous.

Indeed, their GMM estimator is based on an unconditional moment condition, which

requires integrating over the entire set of networks that are compatible in the data. In

Chandrasekhar and Lewis (2011), there are 2N(N−1)−M such networks, where M is the

number of sampled pairs of individuals. Even for small networks, the computational

cost is substantial whenever sampling is nontrivial. Our SGMM estimator does not

suffer from this computational cost and can produce precise estimates with as little

as three network simulations. While our Bayesian estimator is more computationally

demanding, we exploit recent developments from the empirical literature on network

formation (e.g. Mele (2017); Hsieh et al. (2019)) and show that it is computationally

tractable, even when no link is sampled (e.g. with ARD), which would otherwise

require integrating over the 2N(N−1) networks compatible with the data.

Misclassification: Hardy et al. (2019) look at the estimation of (discrete) treat-

ment effects when the network is observed noisily. Specifically, they assume that

observed links are affected by iid errors and present an expectation maximization

(EM) algorithm that allows for a consistent estimator of the treatment effect. Lewbel

et al. (2019) show that the estimation of the linear-in-means model is consistent and
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that inference is valid if the expected number of misclassified links grows at a rate

slower than O(
√
N).

Our model allows for misclassification of all links with positive probability. As in

Hardy et al. (2019), we use a network formation model to estimate the probability of

false positives and false negatives. However, our two-stage strategy—estimating the

network formation model and then the peer effect model—allows for greater flexibility.

In particular, our network formation model is allowed to flexibly depend on covariates.

This is empirically important, as networks typically feature homophily on observed

characteristics (e.g. Currarini et al. (2010); Bramoullé et al. (2012)).

Aggregate relational data: Breza et al. (2020) propose to estimate network effects

using aggregate relation data (ARD). These are obtained from such survey questions

as, “How many of your friends have trait X?” They present a network formation model

that can be estimated using only ARD. They show the validity of their methodology

using two empirical applications in which the outcome of interest depends on the

summary statistics of the network. Alidaee et al. (2020) present an alternative es-

timator allowing to recover nonparametrically the linking probability through ARD.

Using a low-rank assumption, they present a simple penalized regression.

We show that these recent methodologies can also be applied to the study of peer

effects using the linear-in-means model, which significantly expands the scope of the

potential applications of these approaches. In particular, we study the finite sample

performance of our SGMM estimator using Monte Carlo simulations and show that we

can successfully recover the simulated parameters when combined with the network

formation estimators proposed by Breza et al. (2020) or by Alidaee et al. (2020).

A main contribution of this paper is that our estimators can be applied to each

of the previously mentioned data issues or to their combination. Our two-step

approach—first estimating the network formation and then the peer effects—is flex-

ible and computationally attractive. To reduce the implementation costs, we also

present an easy-to-use R package—named PartialNetwork—for applying our esti-
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mators. The package allows replicating all simulations and empirical applications

in the paper, including the estimator proposed by Breza et al. (2020). The pack-

age is available online at: https://github.com/ahoundetoungan/PartialNetwork.

Additional implementation examples are provided in the vignette accompanying the

package. For example, we show that the implementation of our Bayesian estimator,

combined with the estimator for ARD proposed by Breza et al. (2020), is straightfor-

ward and computationally tractable.

The remainder of the paper is organized as follows. In Section 2, we present the

econometric model as well as the main assumptions. In Section 3, we present our

SGMM estimator and study its performance when combined with the estimators for

ARD proposed by Breza et al. (2020) and Alidaee et al. (2020). In Section 4, we

present our Bayesian estimation strategy. In Section 5, we present our application to

peer effects on academic achievement. Section 6 concludes.

2 The Model

We now formally present our model. We first describe the linear-in-means model

(Manski, 1993; Bramoullé et al., 2009), arguably the most widely used model for

studying peer effects in networks (see Bramoullé et al. (2020) for a recent review).

We then introduce our main assumption, characterizing what is known about the

structure of the network.

2.1 The Linear-in-Means Model

Let A represent the N ×N adjacency matrix of the network. We assume a directed

network: aij ∈ {0, 1}, where aij = 1 if i is linked to j. We normalize aii = 0 for all

i and let ni =
∑
j

aij denote the number of links of i. Let G = f(A), the N × N

interaction matrix for some function f . Unless otherwise stated, we assume that

7

https://github.com/ahoundetoungan/PartialNetwork


G is a row-normalization of the adjacency matrix A.4 Most of our results hold for

any function f which preserves the independence among groups (see Assumption 2

below).

We focus on the following model:

y = c1 + Xβ + αGy + GXγ + ε, (1)

where y is a vector of an outcome of interest (e.g. academic achievement), c is a

constant, X is a matrix of observable characteristics (e.g. age, gender...), and ε is a

vector of errors.5 The parameter α therefore captures the impact of the average out-

come of one’s peers on their behavior (the endogenous peer effect). The parameter β

captures the impact of one’s characteristics on their behavior (the individual effects).

The parameter γ captures the impact of the average characteristics of one’s peers on

their behavior (the contextual peer effects).

The following set of assumptions summarizes our setup.

Assumption 1. |α| < 1/∥G∥ for some submultiplicative norm ∥ · ∥.

Assumption 2. The population is partitioned into M > 1 groups, where the size Nr

of each group r = 1, ...,M is bounded. The probability of a link between individuals of

different groups is equal to 0.

Assumption 3. For each group, the outcome and individual characteristics are ob-

served, i.e. (yr,Xr), r = 1, ...,M , are observed.

Assumption 4. Exogeneity: E[ε|X] = 0.

Assumption 1 ensures that the model is coherent and that there exists a unique

vector y compatible with (1). When G is row-normalized, |α| < 1 is sufficient.

Assumption 2 is introduced for exposition purposes; for example, the data could
4In such a case, gij = aij/ni whenever ni > 0, whereas gij = 0 otherwise.
5Note that Boucher and Bramoullé (2020) recently showed that (1) is valid (coherent, complete,

and microfounded), even when yi is binary.
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consist of a collection of small villages (Banerjee et al., 2013) or schools (Calvó-

Armengol et al., 2009). Our methods extend to alternative assumptions such as

those proposed by Lee (2004) and Lee et al. (2010).6

Assumption 3 implies that the data is composed of a subset of fully sampled

groups.7 A similar assumption is made by Breza et al. (2020). Note that Assumption

4 does not impose restrictions on the dependence between the errors and the network

structure. We present the network formation process in details in the next section.

2.2 Partial Network Information

In this paper, we relax the costly assumption that the adjacency matrix A is observed.

We assume instead that sufficient information about the network is observed so that

a network formation model can be estimated.

More formally, we let A denote the observed information about the true network

structure. That is, A is a function of the true network A and potentially of individ-

uals’ characteristics (see Example 4). We impose no particular structure on A but

discuss important examples below (see Examples 1–4).

We assume that links are generated as follows:

P (aij) ≡ P (aij|ρ0) ∝ exp{aijQ(ρ0,wij)}, (2)

where Q is some known continuous function, wij = wij(X) is a vector of observed

characteristics for the pair ij, and ρ0 is the true value of ρ, a vector of parameters

to be estimated. Note that the assumption that the set of observed characteristics of

the pairs wij are function of X implies that the network is exogenous. We omit the

dependence of P (aij) on wij to simplify the notation.

As will be made clear, our estimation strategy requires that the econometrician

be able to draw samples from (a consistent estimator) P (A). Thus, and for the sake
6The authors assume that the adjacency matrix A is bounded in row- and column-sums.
7Contrary to Liu et al. (2017) or Wang and Lee (2013), for example.
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of simplicity, we focus on distributions that are conditionally independent across links

(i.e. P (aij|A−ij) = P (aij)), as in (2), although this is not formally required.8

We now present our main assumption.

Assumption 5 (Partial Network Information). Given network information A and

the parametric model (2), there exists an estimator ρ̂N , such that ρ̂N →p ρ0 as

N → ∞.

Assumption 5 implies that, using (5), the researcher has access to “sufficient

information” about the network structure to obtain a consistent estimator of the

distribution of the true network P (A). We denote such a consistent estimator by

P̂ (A) ≡ P (A|ρ̂,A). We omit the dependence on A to simplify the notation when

this does not create confusion. Note that we can use P̂ (A) to obtain the consistent

estimator P̂ (G), since G = f(A) for some known function f .9

Importantly, it should be noted that even if the econometrician has access to

a consistent estimator of the distribution of the true network, it does not imply

that they could simply proxy G in (1) using a draw G̃ from the distribution P̂ (G).

The reason is that for any vector z, G̃z generally does not converge to Gz as the

number of individuals N goes to infinity. In other words, knowledge of P̂ (G) and

z is not sufficient to obtain a consistent estimator of Gz. To see why, note that

(Gz)i =
N∑
j=1

gijzj. Under Assumption 2, the set of j such that gij ̸= 0 is bounded,

so a consistent estimator of P (G) is not sufficient to obtain a consistent estimator of

GX. This is also true under the alternative assumptions in Lee (2004) and De Paula

et al. (2018b),10 but it contrasts from models based on a large network asymptotic

(e.g. Auerbach (2022)).
8A prime example of a network distribution that is not conditionally independent is the distri-

bution for an exponential random graph model (ERGM), e.g. Mele (2017).
9Since A takes a finite number of values, so does G, and P (G) is a multinomial distribution. As

such it is a continuous function of the distribution P (A), irrespective of the function f linking A
and G.

10Lee (2004) requires that G be bounded in row- and column-sums (in absolute value), whereas
De Paula et al. (2018b) assume that A is bounded in row-sums.
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Assumption 5 covers a large range of cases in which networks are partially ob-

served. We specifically discuss four leading examples in which Assumption 5 holds:

sampled networks (Example 1), censored networks (Example 2), misclassified network

links (Example 3), and aggregated relational data (Example 4).

Example 1 (Sampled Networks). Suppose that we observe the realizations of aij for

a random sample of m pairs (e.g. Chandrasekhar and Lewis (2011)). Here A can be

represented by an N ×N binary matrix Aobs. Conley and Udry (2010) present such

a sampling scheme and ask individuals about their relationship with a random sample

of other individuals, for example, “Do you know person X?”

Such a setup is sufficient to consistently estimate flexible network formation mod-

els such as the one in Graham (2017). A simpler example would be to assume that

the network formation model (2) is equal to P (aij = 1) ∝ exp{wijρ}. In this case, a

simple logistic regression provides a consistent estimator of ρ.

Given this consistent estimator for ρ and the assumed parametric model, we can

compute an estimator for the distribution of the true network P̂ (A) = P (A|ρ̂,A).

Here, P̂ (aij) = aobsij for any sampled link ij, while P̂ (aij) ∝ exp{aijwijρ̂} for the

remaining unsampled links.

Example 2 (Censored Network Data). As discussed in Griffith (2019), network data

is often censored. This typically arises when surveyed individuals are asked to name

only T > 1 links (among the N possible links they may have). Here, A can be

represented by an N × N binary matrix Aobs. We can use censored network data to

estimate a network formation model such as P (aij = 1) ∝ exp{wijρ}, for example.

For simplicity, let us assume as in Griffith (2019) that each link has the same

probability of being censored. Then, the parameters in ρ (other than the constant) are

identified from the observed ratios
∑
ij

aijw
k
ij/
∑
ij

wk
ij (for observable characteristic

k), as these sufficient statistics are not biased by censoring. To identify the constant,

note that we can easily compute the likelihood of the censored degree distribution (i.e.
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ni =
∑
j

aij). That is P (ni = t|W;ρ) for observed t < T and P (ni ≥ T |W;ρ) for

observed t = T , which allows identifying the constant.11

Once such estimator of ρ is obtained, we can compute an estimator for the distri-

bution of the true network P̂ (A) = P (A|ρ̂,A). In particular, P (aij|ρ̂, aobsij = 1) = 1

because observed links necessarily exist. Also note that for all individuals i, such

that ni < T , we have P (aij|ρ̂, aobsij ) = aobsij for all j, as their network data are

not censored. Here, the structural model is only used to obtain the probability of

links that are not observed for individuals whose links are potentially censored, i.e.

P (aij|ρ̂, aobsij = 0) ∝ exp{aijwijρ̂} for all ij, such that ni ≥ T .

Example 3 (Misclassification). Hardy et al. (2019) study cases in which networks are

observed but may include misclassified links (i.e. false positives and false negatives).

Here, A can be represented by an N × N binary matrix Amis. The (consistent)

estimation of (2) in such a context follows directly from the existing literature on

misclassification in binary outcome models, e.g. Hausman et al. (1998).

Let q1 be the probability of false positives and q0 be the probability of false negatives

(both being elements of ρ). The estimator for the distribution of the true network is

given by P (aij = 1|ρ̂, amis
ij ) = amis

ij (1− q̂1) + (1− amis
ij )q̂0.

Example 4 (Aggregated Relational Data). Aggregated relational data (ARD) are

obtained from survey questions such as, “How many friends with trait ‘X’ do you

have?” Here, A can be represented by an N ×K matrix of integer values, where K

is the number of traits that individuals were asked about.

Building on McCormick and Zheng (2015), Breza et al. (2020) proposed a novel

approach for the estimation of network formation models using only ARD. They as-

sume:

P (aij = 1) ∝ exp{νi + νj + ζz′
izj}, (3)

11A simple alternative, when the data of only a few individuals is censored, is to estimate the
model only for individuals for whom ni < T . We follow this strategy in Section 5.
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where νi, νj, ζ, zi, and zj are not observed by the econometrician but follow parametric

distributions. Here, parameters νi and νj can be interpreted as i and j’s propensities

to create links, irrespective of the identity of the other individual involved. The other

component, ζz′
izj, is meant to capture homophily (like attracts like) on an abstract

latent space (e.g. Hoff et al. (2002)).

Breza et al. (2020) show that it is possible to use aggregate relational data (ARD)

to recover the values of the variables in (3). In particular, letting ρ = [{νi}i, {zi}i, ζ],

Breza et al. (2019) provide sufficient conditions for the consistent estimation of ρ.

Contrary to Examples 1–3, ARD does not provide information on any specific

links; 12 therefore, the predicted distribution of the true network is P (aij|ρ̂,A) =

P (aij|ρ̂), which is given by Equation (3). Here, it is worth emphasizing that the

observed network information (i.e. ARD) is not very informative about the particular

network structure in the data. In this sense, it could be viewed as a worse case

scenario.

3 Simulated Generalized Method of Moment Es-

timators

In this section, we present estimator based on a Simulated Generalized Method of

Moments. The key observation underlying our approach is that it is not necessary to

observe the complete network structure to observe y, X, GX, and Gy. For example,

one could simply obtain Gy from survey data, “What is the average value of your

friends’ y?”

However, even observing y, X, GX, and Gy, the model (1) cannot be simply

estimated using simple linear regression. The reason is that Gy is endogenous; thus,

a linear regression would produce biased estimates (e.g. Manski (1993), Bramoullé
12That is, unless ARD include the degree distribution with some individuals reporting having no

links at all.
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et al. (2009)).

The typical instrumental approach to deal with this endogeneity is to use instru-

ments based on the structural model, i.e. instruments constructed using second-degree

peers (e.g. G2X, see Bramoullé et al. (2009)). These are less likely to be found in

survey data. Indeed, we could doubt the informativeness of questions such as, “What

is the average value of your friends’ average value of their friends’ x?”

However, the above discussion is encouraging. When researchers observe [y,X,GX,Gy],

information about the network is only used as a mean to construct a valid instru-

ment, e.g. following Bramoullé et al. (2009). Then, if GX and Gy are observed, the

following simple estimator can be used.

Proposition 1. [Conditions] Suppose that GX and Gy are observed. Let H be a

matrix such that: (1) at least one column of HkX is (strongly) correlated with Gy,

conditional on [1,X,GX] for k ≥ 2, and (2) E[ε|X,H] = 0. Finally, define the

matrix Z = [1,X,GX,H2X,H3X...].

[Results] Then, under classical assumptions (e.g. Cameron and Trivedi (2005),

Proposition 6.1), the (linear) GMM estimator based on the moment function 1

N

∑
i

Z′
iεi

is consistent and asymptotically normally distributed with the usual asymptotic variance-

covariance matrix.

Condition (1) is the relevancy condition, while condition (2) is the exogeneity

condition.13 While Proposition 1 holds for any matrix H such that conditions (1)

and (2), the most sensible example in our context is when H is constructed using

a draw from P̂ (G). A similar strategy is used by Kelejian and Piras (2014), König

et al. (2019) and Lee et al. (2020) in a different context.

Importantly, the moment conditions remain valid even when the researcher uses

a mispecified estimator of the distribution P (G), as long as the specification error
13While (for simplicity) in Proposition 1, we use the entire matrix X in order to generate the

instruments HX, in practice, one should avoid including instruments (i.e. columns of HX) that are
weakly correlated with Gy.
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on P (G) does not induce a correlation with ε.14 This could be of great practical

importance, especially if the estimation of P̂ (G) suffers from small sample bias.

3.1 The General Case

We now turn to the more general case where Gy and GX are not observed. To

simplify the notation, for the remainder of this section, we define {Ġ(r)}Rr=1, {G̈(s)}Ss=1

and {
...
G

(t)
}Tt=1 as sequences of independent draws from P̂ (G). We will also let Ġ, G̈,

and
...
G be single independent draws from P̂ (G).

Before presenting our estimation strategy, we want to emphasize that we cannot

simply proxy Gy and GX using draws form P̂ (G). To see why, consider the sim-

ple case for which γ = 0, so the observation of GX is inconsequential. We have,

substituting Gy with G̈y:

y = c1 + Xβ + αG̈y + [η + ε],

where η = α[G − G̈]y is the error due to the approximation of Gy by G̈y. Im-

portantly, the approximation error does not vanish as n grows, due to the fact that

individuals belong to bounded groups (see Assumption 2).15 Moreover, since y is a

function of G (but not of G̈), we typically have E(Gy)i|zi ̸= E(G̈y)i|zi for some

vector of instruments zi and all i.

Proposition 2 below however shows that the asymptotic bias induced by Eηi|zi ̸= 0

can be bounded, and be very small in practice for carefully constructed vectors of

instruments.
14We would like to thank Chih-Sheng Hsieh and Arthur Lewbel for discussions on this important

point.
15As opposed, for example, to the context studied by Auerbach (2019).
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3.1.1 Asymptotically Biased Estimator

Before presenting our main result (Theorem 1), we present a simple, asymptotically

biased, linear GMM estimator. The presentation of such this estimator is useful for

two reasons. First, simulations show that the asymptotic bias turns out to be neg-

ligible in many cases, especially for moderate group sizes. Moreover, the estimator

is computationally attractive since the estimator can be written in closed-form. Sec-

ond, the estimator helps to understand the logic underlying the estimator defined in

Theorem 1, which we can view as a bias-corrected version of this simple linear GMM

estimator. Proposition 2 formalizes.

Proposition 2. [Conditions] Assume that GX is observed. Let S̈ = [1,X,GX, G̈X, G̈y]

and Ż = [1,X,GX, G̈X, Ġ2X, Ġ3X, ...]. Denote by θ̂ the linear GMM estimator

based on the (pseudo) moment function 1

N

∑
i

Żi[ηi + εi], and define the sensitivity

matrix

MN = [(S̈′Ż/N)W(Ż′S̈/N)]−1(S̈′Ż/N)W.

[Result] Then, under classical assumptions (see proof), the asymptotic bias of

θ̂ is given by αM0 plim[Ż′(G − G̈)y/N ]. Moreover, letting W = I minimizes the

asymptotic bias in the sense of minimizing the Frobenius norm of M.

While there are no obvious way to get a consistent estimate of the asymptotic

bias (because y is a function of G) simulations show that the bias is very small in

practice.16

The intuition behind Proposition 2 comes from the literature on error-in-variable

models with repeated observations (e.g. Bound et al. (2001)). The instrumental

variable uses two independent draws from the (estimated) distribution of the true

network. One draw is used to proxy the unobserved variable (i.e. Gy), while the

other is used to proxy the instrument (i.e. GX). This approach greatly reduces the

bias as compared to a situation in which only one draw would be used.17

16See Section 3.2 below.
17Simulations available uppon request.
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The argument in Proposition 2 is very similar to the one in Andrews et al. (2017),

although here perturbation with respect to the true model is not local.18 We also

show that we expect W = I to minimize the asymptotic bias. Our result therefore

provides a theoretical justification for the simulations in Onishi and Otsu (2021) who

show that the using the identity matrix to weight the moments greatly reduce the

bias in the context studied by Andrews et al. (2017).

Conceptually, Proposition 2 states that the simple linear GMM estimator θ̂ is

such θ̂ = θ0 + F (θ0) for some known function F . It is therefore possible to use this

insight to define a consistent estimator of θ0. This is what we do in Theorem 1 below.

3.1.2 Main Result

We show that we can include the bias directly in the moment function, which provides

a consistent estimator of θ. Let θ̃ = [c,β′,γ ′]′.

Theorem 1. [Conditions] Let Ż(r) = [1,X, Ġ(r)X, (Ġ(r))2X, (Ġ(r))3X, ...] and V̈(s) =

[1,X, G̈(s)X]. Consider also the following (simulated) moment function:

1

RST

R∑
r=1

S∑
s=1

T∑
t=1

Ż(r)′
i

[
(I − α

...
G

(t)
)i

(
y − (I − αG̈(s))−1V̈(s)θ̃

)]
(4)

[Result] For any positive integers R, S and T , the (simulated) GMM estimator

based on (4) is consistent and asymptotically normal, i.e.
√
N(θ̂ − θ0 + ∆θ∗)

d→

N(0,V), where ∆θ∗ and V are defined in (10) and (12) in the Online Appendix and

where ∆θ∗ → 0 as N → ∞.

Here the asymptotic variance V includes the sampling uncertainty, the estimating

uncertainty of ρ̂, as well as the simulating uncertainty (which decreases as R, S and

T grow). The term ∆θ∗ is introduced due to the fact the our moment condition is

equal to zero only asymptotically, and it therefore allows to center the distribution of
18See page 1562 in Andrews et al. (2017).
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θ̂ for finite N . Similar corrections can be found for penalized likelihood models (e.g.

Fan and Li (2001), Fan and Peng (2004), Dzemski (2019))

Importantly, and similar to standard methods of simulated moments (e.g. Gourier-

oux and Monfort (1993)), the estimation is consistent even for a finite number of

simulations (i.e. R, S, and T are finite). Our estimator therefore does not suffer from

the curse of dimensionality faced by Chandrasekhar and Lewis (2011).19

To understand the intuition behind the use of the moment function (4), let us

replace y = (I−αG)−1(Vθ̃+ε) in equation (4). In doing so, we can rewrite the term

inside the triple summation in (4) as a sum of two terms. First, Ż(r)′
i εi, which would

be the standard moment function if G was observed (e.g. Bramoullé et al. (2009)),

and second:

Ż(r)′
i

[
(I − α

...
G

(t)
)i

(
(I − αG)−1V − (I − αG̈(s))−1V̈(s)

)
θ̃
]
. (5)

That second term can be viewed as the bias-correction term of the moment function.

We show that the expectation both terms are equal to 0 as N grows to ∞. For

the first term, this is true since the simulated network is exogenous. For the second

term, this is true because G, Ġ, G̈ and
...
G are asymptotically drawn from the same

distribution.

For the special case in which G is observed, one could substitute Ġ(r) = G̈(s) =
...
G

(t)
= G for all r, s, t and the first term would simply be Z′

iεi, while the second term

would be exactly equal to 0.

Note that Theorem 1 is valid whether or not Gy and GX are observed since the

moment function (4) does not use information on Gy or GX. It is of course possible

to include this additional information, if either one is observed.

For example, assume that GX is observed, and replace V̈ with V in (5). After
19The unconditional moment condition in Chandrasekhar and Lewis (2011) is based on the (Monte

Carlo) integration of the moment condition E(Z(s)′ε|G) over G. Suppose that there are m pairs of
individuals with unknown link status, there would be 2m network structures to integrate from.
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some algebra, we obtain:20

Ż(r)′
i

[
(I − α

...
G

(t)
)i(I − αG̈(s))−1[α(G − G̈)y]

]
, (6)

plus a term that is equal to zero in expectation.

We can see that the last term in bracket corresponds to the source of the asymp-

totic bias in Proposition 2: the approximation error of Gy by G̈y. The instruments

used are however different and, here, are such that (6) does not converge to 0 as N

grows. As for Proposition 2, this is due to the fact that y is a function of G. It

is however possible to construct moment functions for the particular cases for which

GX or Gy are observed. These can be found in Corollary 1 and 2 of the Online

Appendix.

The results of this Section show that the estimation of (1) is possible, even with

very limited information about the network structure. In Section 3.2, we study the

finite sample properties of our approach using network formation models estimated

on aggregated relational data (Breza et al. (2020); see Example 4).

3.2 Finite Sample Performance Using ARD

In this section, we study the small sample performance of the estimator presented in

Section 3 when the researcher only has access to ARD (as in Example 4). First, we

simulate network data using the model proposed by Breza et al. (2020) and simulate

outcomes using the linear in means model (1) conditional on the simulated networks.

Second, we estimate the network formation model using the Bayesian estimator pro-

posed by Breza et al. (2020) (yielding ρ̂B), as well as using the classical estimator

proposed by Alidaee et al. (2020) (yielding ρ̂A). Third, we estimate the linear-in-

means model, using our the estimators presented in Proposition 2 and Theorem 1,

based on ρ̂A and ρ̂B.
20See the Online Appendix
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Recall that

P (aij = 1) ∝ exp{νi + νj + ζz′
izj}, (7)

where νi, νj, ζ, zi, and zj are not observed by the econometrician but follow parametric

distributions. We refer the interested reader to McCormick and Zheng (2015), Breza

et al. (2020), and Breza et al. (2019) for a formal discussion of the model, including

its identification and consistent estimation.

To study the finite sample performance of our instrumental strategy in this con-

text, we simulate 20 groups of 250 individuals each. Within each subpopulation, we

simulate the ARD responses as well as a series of observable characteristics. The

details of the Monte Carlo simulations can be found in the Online Appendix.

Importantly, the model in (7) is based on a single population framework. Thus,

the network formation model must be estimated separately for each of the 20 groups.

With only 250 individuals in each group, we therefore expect significant small-sample

bias.

We contrast the estimator proposed by Breza et al. (2020) with the one proposed

by Alidaee et al. (2020). Whereas Breza et al. (2020) present a parametric Bayesian

estimator, Alidaee et al. (2020) propose a (nonparametric) penalized regression based

on a low-rank assumption. One main advantage of their estimator is that it allows

for a wider class of model and ensures that the estimation is fast and easily imple-

mentable.21 Note, however, that their method only yields a consistent estimator of

P̂ (A) if the true network is effectively low rank.

Very intuitively, the low-rank assumption implies that linking probabilities were

generated from a small number of parameters.Importantly, the model (7) is not nec-

essarily low rank; for example, if the individuals’ locations on Earth (i.e. the zi’s)

are uniformly distributed and there are only very few large cities, then the model

produced is not low rank and the method proposed by Alidaee et al. (2020) performs
21The authors developed user-friendly packages in R and Python. See their paper for links and

details.
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poorly. Intuitively, in such a case, the fact that individual i lives in city A poorly

explains the linking probabilities.

We compare the performance of both estimators as we vary the concentration

parameter (that is, κ, see the Online Appendix for details). This has the effect of

changing the effective rank of the linking probabilities: increasing κ decreases the

effective rank.22 We therefore expect the estimator proposed by Alidaee et al. (2020)

to perform better for larger values of κ.

A summary of the results is presented in Tables 1 and 2. The complete results

can be found in Tables C.1 and C.2 of the Online Appendix. Table 1 presents the

results for the special case where GX are observed in the data. The table displays

the performance of the simple (biased) estimator in Proposition 2 and that of our

simulated GMM (see Corollary 1) when the network formation model is estimated by

Breza et al. (2020) and Alidaee et al. (2020).

When κ = 0, the network formation is not low-rank. This disproportionately

affects the estimator of Alidaee et al. (2020). Although asymptotically biased, the

performance of the IV in Proposition 2 is very good and even seems to outperform our

SGMM when using the estimator proposed by Alidaee et al. (2020). Moreover, the

overidentification test points (on average) to a violation of the exclusion restriction.

When κ = 15 the estimators proposed by Breza et al. (2020) and Alidaee et al.

(2020) perform similarly and so do our estimators. Both the IV and SGMM estimators

recover the true value of α.

We now turn to the more general case where GX are not observed. Note that

in that case, Proposition 2 does not apply. Table 2 presents the performance of our

SGMM estimator (Theorem 1) when the network formation process is estimated using

the estimators proposed by Breza et al. (2020) and Alidaee et al. (2020), as well as

when we assume that the researcher knows the true distribution of the network.

We see that the performance of our estimator, is strongly affected by the quality
22We refer the interested reader to Alidaee et al. (2020) for a formal discussion of the effective

rank and of its importance for their estimator.
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of the first-stage network formation estimator. When based on either the estimator

proposed by Breza et al. (2020) or Alidaee et al. (2020), for κ = 0 or κ = 15, our

SGMM estimator performs poorly.

This poor performance of our SGMM estimator in a context where both Gy

and GX are unobserved was anticipated. This is due to two main reasons. First, the

consistency of the network formation estimator in Breza et al. (2019) holds as the size

of each sub-population goes to infinity, while the consistency of our estimator holds

as the number of (bounded) sub-populations goes to infinity. This should affect the

performance of our estimator, when based on estimated network formation models,

but when based on the true distribution of the network.

Second, as discussed in Example 4, ARD provides very little information about

the realized network structure in the data (as opposed, for example, as for censoring

issues, see Example 2). Then, if the true distribution is vague in the sense that

most predicted probabilities are away from 0 or 1, we expect the estimation to be

imprecise. This is what happens when κ = 15, where our estimation based on the

true distribution of the network is very imprecise, in a context where the network

affects the outcome through both Gy and GX.

In the next section, we present a likelihood based estimator, which uses more

information on the data generating process of the outcome, in order to improve the

precision of the estimation.

4 Estimation Using Bayesian Inference

In the previous section, we showed that in a context in which Gy and GX are unob-

served, and that the distribution of the network is imprecise, the SGMM estimator

can be imprecise. In this section, we therefore present a likelihood-based estimator.

Accordingly, greater structure must be imposed on the errors ε.23

23One could also use our estimator to solve a classical estimator such as a GMM estimator, like that
proposed by Chandrasekhar and Lewis (2011), using either the approach proposed by Chernozhukov
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Table 1: Simulation results with ARD and observed GX

Parameter Breza et al. Alidaee et al.
Mean Std. Dev Mean Std. Dev

κ = 0

IV (Proposition 2)
α = 0.4 0.392 (0.009) 0.372 (0.027)
Sargan test 1.217 (1.761) 7.779 (10.386)
F-test (Weak inst.) 4259.622 (1140.825) 597.055 (251.886)

SGMM (Corollary 1)
α = 0.4 0.392 (0.010) 0.492 (0.057)

κ = 15

IV (Proposition 2)
α = 0.4 0.400 (0.007) 0.399 (0.007)
Sargan test 1.063 (1.496) 2.608 (1.496)
F-test (Weak inst.) 5306.551 (1519.394) 1767.274 (1519.394)

SGMM (Corollary 1)
α = 0.4 0.400 (0.009) 0.428 (0.009)

Note: For each case, we generated 20 independent subnetworks of 250 individuals
each. In each subnetwork, the spherical coordinates of individuals are generated
from a von Mises–Fisher distribution with a location parameter (1, 0, 0) and inten-
sity parameter κ. Details of the simulation exercise can be found in the Online
Appendix B. Predicted probabilities are computed using the mean of the posterior
distribution. Sargan test is the statistic of the overidentification test. F-test is the
Fisher-statistic of the Weak instruments test. We chose the weight associated with
the nuclear norm penalty to minimize the RMSE through cross-validation. This
value of λ = 600 is smaller than the recommended value in Alidaee et al. (2020).
See Table C.1 for the estimated values of the other parameters. Instruments are
build using only second-degree peers, i.e. G2X.
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Table 2: Simulation results with ARD and unobserved GX (SGMM, Theorem 1)

Parameter Breza et al. Alidaee et al. True distribution
Mean Std. Dev Mean Std. Dev Mean Std. Dev

κ = 0

α = 0.4 0.717 (0.463) 0.700 (0.268) 0.400 (0.056)

κ = 15

α = 0.4 0.603 (0.069) 0.870 (0.202) 0.434 (0.394)

Note: For each case, we generated 20 independent subnetworks of 250 individuals each.
In each subnetwork, the spherical coordinates of individuals are generated from a von
Mises–Fisher distribution with a location parameter (1, 0, 0) and intensity parameter
κ. Details of the simulation exercise can be found in the Online Appendix. Predicted
probabilities are computed using the mean of the posterior distribution. Sargan test
is the statistic of the overidentification test. F-test is the Fisher-statistic of the Weak
instruments test. See Table C.2 for the estimated values of the other parameters. In-
struments are build using only second-degree peers, i.e. G2X.

To clarify the exposition, we will focus on the network adjacency matrix A rather

than the interaction matrix G. Of course, this is without any loss of generality. Given

parametric assumptions for ε, one can write the log-likelihood of the outcome as:24

lnP(y|A,θ), (8)

where θ = [α,β′,γ ′,σ′]′, σ are unknown parameters from the distribution of ε. Note

that y = (IN − αG)−1(c1 + Xβ + GXγ + ε) and (IN − αG)−1 exist under our

Assumption 1.

If the adjacency matrix A was observed, then θ could be estimated using a simple

maximum likelihood estimator (as in Lee et al. (2010)) or using Bayesian inference

(as in Goldsmith-Pinkham and Imbens (2013)).

Since A is not observed, an alternative would be to focus on the unconditional

likelihood, i.e.

lnP(y|θ) = ln
∑

A
P(y|A,θ)P (A).

and Hong (2003), or the Bayesian empirical likelihood approach by Chib et al. (2018).
24Note that under Assumption 2, the likelihood can be factorized across groups.
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A similar strategy is proposed by Chandrasekhar and Lewis (2011) using a GMM

estimator.

One particular issue with estimating lnP(y|θ) is that the summation is not

tractable. Indeed, the sum is over the set of possible adjacency matrices, which

contain 2N(N−1) elements. Then, simply simulating networks from P (A) (or rather

from P̂ (A)) as proposed by Chandrasekhar and Lewis (2011), and taking the average

likely lead to poor approximations. A classical way to address this issue is to use an

EM algorithm (Dempster et al., 1977). Although valid, we found that the Bayesian

estimator proposed in this section is less restrictive and numerically outperforms its

classical counterpart.

For concreteness, we will assume that ε ∼ N (0, σ2IN); however, it should be noted

that our approach is valid for a number of alternative assumptions, as long as it yeilds

a computationally tractable likelihood. We have, for G = f(A),

lnP(y|A,θ) = −N ln(σ) + ln |IN − αG| − N

2
ln(π)

− 1

2σ2
[(IN − αG)y − c1N − Xβ − GXγ]′ ·

[(IN − αG)y − c1N − Xβ − GXγ].

Since A is not observed, we follow Tanner and Wong (1987) and Albert and Chib

(1993), and we use data augmentation to evaluate the posterior distribution of θ.

That is, instead of focusing on the posterior p(θ|y,A), we focus on the posterior

p(θ,A|y,A), treating A as another set of unknown parameters. Note that we now

make the dependence on A explicit for clarity.

Indeed, the identification of the model rests on the a priori information of A. A

sensible prior for A is the consistent estimator of its distribution, i.e. P̂ (A|A) ≡

P (A|ρ̂,A). One may wish, however, to also use the information regarding the sam-

pling uncertainty around P̂ (A|A). This is very similar to inference for two-step

estimators in a classical setting: estimation uncertainty in the first stage must be
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accounted for to provide valid inference in the second stage (see Cameron and Trivedi

(2005), Section 6.6, for a discussion).

Let π(ρ|A) be the prior density on ρ. How to obtain π(ρ|A), depending on

whether ρ̂ is obtained using a Bayesian or classical setting, is discussed in Examples

5 and 6 below. Given π(ρ|A), it is possible to obtain draws from the posterior

distribution p(ρ,A|y,A) using the following MCMC:

Algorithm 1. The MCMC goes as follows for t = 1, ..., T , starting from any A0,θ0,

and ρ0.

1. Draw ρ∗ from the proposal distribution qρ(ρ
∗|ρt−1) and accept ρ∗ with probability

min
{
1,

P (At−1|ρ∗,A)qρ(ρt−1|ρ∗)π(ρ∗|A)

P (At−1|ρt−1,A)qρ(ρ∗|ρt−1)π(ρt−1|A)

}
.

2. Propose A∗ from the proposal distribution qA(A∗|At−1) and accept A∗ with

probability

min
{
1,

P(y|θt−1,A∗)qA(At−1|A∗)P (A∗|ρt−1,A)

P(y|θt−1,At−1)qA(A∗|At−1)P (At−1|ρt−1,A)

}
.

3. Draw α∗ from the proposal qα(·|αt−1) and accept α∗ with probability

min
{
1,

P(y|At;βt−1,γt−1, α
∗)qα(αt−1|α∗)π(α∗)

P(y|At;θt−1)qα(α∗|αt−1)π(αt−1)

}
.

4. Draw [β, γ, σ] from their conditional distributions.

As discussed, Step 1 accounts for the sampling uncertainty around the true value

of ρ. If the true value of ρ was known (instead of being estimated) Step 1 would not

be required. Step 1 shows that the flexibility of the network formation model comes

at a cost. For example, Graham (2017) and Breza et al. (2020) propose network

formation models for which the number of parameters is O(Nr). In turn, this large

number of parameters increases the computational cost of Step 1.

26



Example 5 (Priors from the Asymptotic Distribution of ρ). In a classical setting,

and under the usual assumptions, the estimation of (2) produces a estimator ρ̂ of ρ0

as well as an estimator of the asymptotic variance of ρ̂, i.e. V̂(ρ̂). In this case, we

define the prior density π(ρ) as the density of a multivariate normal distribution with

mean ρ̂ and variance-covariance matrix V̂(ρ̂).

Example 6 (Priors from the Posterior Distribution of ρ). In a Bayesian setting,

the estimation of ρ from the network formation model (2) results in draws from the

posterior distribution of ρ. It is therefore natural to use such a posterior distribution

as the prior distribution of A for the estimation based on (8). Performing such a

sequential Bayesian updating approach comes with a well-known numerical issue.25

Indeed, the evaluation of the acceptance ratio in Step 1 of Algorithm 1 below re-

quires the evaluation of the density of ρ at different values. Ideally, one would use

the draws from the posterior distribution of ρ from the first step (network formation

model) and perform a nonparametric kernel density estimation of the posterior dis-

tribution. However, when the dimension of ρ is large, the kernel density estimation

may be infeasible in practice.

This is especially true for very flexible network formation models, such as the

one proposed by Breza et al. (2020), for which the number of parameters to estimate

is O(Nr). In such a case, it might be more reasonable to use a more parametric

approach or to impose additional restrictions on the dependence structure of ρ across

dimensions.26

Detailed distributions for Steps 3 and 4 can be found in the Online Appendix.

Step 2, however, involves requires some discussion. Indeed, the idea is the following:

given the prior information P (A|ρt−1,A), one must be able to draw samples from the

posterior distribution of A, given y. This is not a trivial task.
25See Thijssen and Wessels (2020) for a recent discussion.
26For example, if we assume that the posterior distribution of ρ is jointly normal, the estimation

of the mean and variance-covariance matrix is straightforward, even in a high-dimensional setting.
Simulations (not reported) suggest that this approach performs well in practice.
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In particular, there is no general rule for selecting the network proposal distri-

bution qA(·|·). A natural candidate is a Gibbs sampling algorithm for each link, i.e.

change only one link ij at every step t and propose aij according to its marginal

distribution, i.e. aij ∼ P (·|A−ij,y,A), where A−ij = {akl; k ̸= i, l ̸= j}. In this case,

the proposal is always accepted.

However, it has been argued that Gibbs sampling could lead to slow convergence

(e.g. Snijders (2002), Chatterjee et al. (2013)), especially when the network is sparse

or exhibits a high level of clustering. For example, Mele (2017) and Bhamidi et al.

(2008) propose different blocking techniques that are meant to improve convergence.

Here, however, achieving Step 2 involves an additional computational issue be-

cause evaluating the likelihood ratio in Step 1 requires comparing the determinants

|I−αf(A∗)| for each proposed A∗, which is computationally intensive. In particular,

taking G∗ = f(A∗) to be a row-normalization of A∗, changing a single element of A∗

results in a change in the entire corresponding row of G∗. Still, comparing the deter-

minant of two matrices that differ only in a single row is relatively fast. Moreover,

when G = A, Hsieh et al. (2019) propose a blocking technique that facilitates the

computation of the determinant.

In any case, note that the computational complexity of Step 2 depends strongly

on P (A|ρt−1,A), which is a function of the assumed network formation model (2) and

of the observed information about the network structure A. For censored network

data, for example, most of the network structure is observed (see Example 2). This

implies that P (aij|ρt−1,A) ∈ {0, 1} for most pairs ij. As such, few entries of A must

be updated in Step 2. The opposite is true for ARD (see Example 4) for which all

entries of A must be updated.

Then, the appropriate blocking technique depends strongly on P (A|ρt−1,A) as

well as on the assumed distribution for ε. For the simulations and estimations pre-

sented in this paper, we use the Gibbs sampling algorithm for each link, adapting

the strategy proposed by Hsieh et al. (2019) to our setting (see Proposition 3 in the
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Online Appendix. This can be viewed as a worse-case scenario. Nonetheless, the

Gibbs sampler performs reasonably well in practice, even for ARD;27 however, we en-

courage researchers to try other updating schemes if Gibbs sampling performs poorly

in their specific contexts. In particular, we present a blocking technique in the Online

Appendix that is also implemented in our R package PartialNetwork.28

It is important to note that the complexity of Step 2 is not limited to our Bayesian

approach. Classical estimators, such as GMM estimators, face a similar challenge in

requiring the integration over the entire set of networks. The strategy used here is to

rely on a Metropolis–Hastings algorithm, a strategy that has also been successfully

implemented in the related literature on ERGMs (e.g. Snijders (2002); Mele (2017,

2020); Badev (2018); Hsieh et al. (2019, 2020)).

Finally, note that for simple network formation models, it is possible to jointly

estimate ρ and θ within the same MCMC instead of using the two-step procedure

described above. In that case, Step 1 can simply be replaced by:

1’. Draw ρ∗ from the proposal distribution qρ(ρ
∗|ρt−1) and accept ρ∗ with proba-

bility

min
{
1,

P (At−1|ρ∗,A)P (A|ρ∗)qρ(ρt−1|ρ∗)π(ρ∗)

P (At−1|ρt−1,A)P (A|ρt−1)qρ(ρ
∗|ρt−1)π(ρt−1)

}
.

Here, P (A|ρ∗) is the likelihood of the network information A assuming the network

formation model in (2). Note that π(ρ), the prior density on ρ, no longer depends

on A and can be chosen arbitrarily (e.g. uniform).

This approach would work well for simple models, such as the ones discussed in

Examples 1 and 3. It is impractical, however, for more involved models, such as the

one proposed by Breza et al. (2020).
27Simulations available upon request.
28Available at: https://github.com/ahoundetoungan/PartialNetwork
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5 Imperfectly Measured Networks

In this section, we assume that the econometrician has access to network data but

that the data may contain errors. To show how our method can be used to address

these issues, we consider a simple example where we are interested in estimating peer

effects on adolescents’ academic achievements.

We use the widely used AddHealth database and show that network data errors

have a first-order impact on the estimated peer effects. Specifically, we focus on a

subset of schools from the “In School” sample that each have less than 200 students.

Table 3 displays the summary statistics.

Table 3: Summary statistics.

Statistic Mean Std. Dev. Pctl(25) Pctl(75)
Female 0.540 0.498 0 1
Hispanic 0.157 0.364 0 0
Race

White 0.612 0.487 0 1
Black 0.246 0.431 0 0
Asian 0.022 0.147 0 0
Other 0.088 0.283 0 0

Mother’s education
High 0.310 0.462 0 1
<High 0.193 0.395 0 0
>High 0.358 0.480 0 1
Missing 0.139 0.346 0 0

Mother’s job
Stay-at-home 0.225 0.417 0 0
Professional 0.175 0.380 0 0
Other 0.401 0.490 0 1
Missing 0.199 0.399 0 0

Age 13.620 1.526 13 14
GPA 2.912 0.794 2.333 3.5
Note: We only keep the 33 schools having less than 200 students from the In-
School sample. The variable GPA is computed by taking the average grade
for English, Mathematics, History, and Science, letting A = 4, B = 3, C = 2,
and D = 1. Thus, higher scores indicate better academic achievement.
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Most of the papers estimating peer effects that use this particular database have

taken the network structure as given. One notable exception is Griffith (2019), looking

at censoring: students can only report up to five male and five female friends. We

also allow for censoring but show that censoring is not the most important issue with

the Add Health data. To understand why, we discuss the organization of the data.

Each adolescent is assigned a unique identifier. The data includes ten variables for

the ten potential friendships (maximum of five male and five female friends). These

variables can contain missing values (no friendship was reported), an error code (the

named friend could not be found in the database), or an identifier for the reported

friends. This data is then used to generate the network’s adjacency matrix A.

Of course, error codes cannot be matched to any particular adolescent; as well,

even in the case where the friendship variable refers to a valid identifier, the referred

adolescent may still be absent from the database. A prime example is when the

referred adolescent has been removed from the database by the researcher, perhaps

due to other missing variables for these particular individuals. These missing links

are quantitatively important as they account for roughly 30% of the total number of

links (7,830 missing for 17,993 observed links). Figure 1 displays the distribution of

the number of “unmatched named friends.”29

To use the methodology developed in Section 4, we first need to estimate a network

formation model using the observed network data. In this section, we assume that

links are generated using a simple logistic framework, i.e.

P (aij = 1) ∝ exp{wijρ},

where wij is built to capture homophily on the observed characteristics of i and j

(see Table 4). We estimate the network formation model on the set of individuals

who nominate strictly less than five male and five female friends and for which we
29We focus on within-school friendships; thus, nominations outside of school are not treated as

“unmatched friends.”
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Figure 1: Frequencies of the number of missing links per adolescent.

observe no “unmatched friends.” For these students, we know for sure that their

friendship data is complete. Under a missing at random assumption, the estimation

is consistent.

Table 4 presents the estimation results for the network formation model (panel

Network Formation), as well as for the peer effect model (panel Peer Effect Model,

column Reconstructed Network). We also present the results for the (inconsistent)

estimation of the peer effect model under the assumption that the observed network

is the true one (panel Peer Effect Model, column Observed Network).

We find evidence of homophily on all observed covariates, which is coherent with

the literature (e.g. Currarini et al. (2010); Boucher and Mourifié (2017); Mele (2020)).

The bias on the peer effects’ coefficients (endogenous and contextual) is qualitatively

important (and statistically significant). The estimated endogenous peer effect using

the reconstructed network is 1.6 times larger than the one estimated assuming that

the observed network is the true network. The reconstructed network also allows

capturing a positive effect of having a high proportion of Hispanic friends on academic

achievement.

The contribution of censoring to these biases is insignificant. In Table C.3 of

the Online Appendix, we report estimates for two alternative cases: one in which we
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disregard censoring and another in which censoring is the only data issue. The impact

of controlling for censoring is almost null, coherent with the fact that only about 5%

of the observations are potentially censored.

Our exercise shows that data errors are a first-order concern when using the Add

Health database. We do not argue, however, that our estimated coefficients in Table

4 are necessarily causal because the friendship network is likely endogenous (e.g.

Goldsmith-Pinkham and Imbens (2013); Hsieh and Van Kippersluis (2018); Hsieh

et al. (2020)). The estimation of peer effects with partial endogenous network data

is left for future research but is discussed in the next section.

5.1 Next Steps

In this paper, we proposed two estimators where peer effects can be estimated without

having knowledge of the entire network structure. We found that, perhaps surpris-

ingly, even very partial information on network structure is sufficient. Nonetheless,

many important challenges remain, in particular with respect to the study of compati-

ble models of network formation, which can be estimated under nonrandom sampling,

for example.
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Table 4: Posterior distribution.

Observed network Reconstructed network
Statistic Mean Std. Dev. t-stat Mean Std. Dev. t-stat

Peer effect model
Peer effects 0.350∗∗∗ (0.024) 14.809 0.564∗∗∗ (0.044) 12.842
Own effects
Female 0.144∗∗∗ (0.029) 5.018 0.120∗∗∗ (0.031) 3.822
Hispanic −0.083∗∗ (0.042) −1.980 −0.145∗∗ (0.047) 3−.090
Race (White)

Black −0.230∗∗∗ (0.045) −5.070 −0.210∗∗∗ (0.055) −3.787
Asian −0.091 (0.089) −1.024 −0.115 (0.089) −1.286
Other 0.055 (0.051) 1.064 0.036 (0.052) 0.686

Mother’s education (High)
<high −0.122∗∗ (0.039) −3.147 −0.126∗∗ (0.039) −3.201
>high 0.140∗∗∗ (0.034) 4.131 0.109∗∗ (0.034) 3.208
missing −0.060 (0.050) −1.182 −0.065 (0.051) −1.277

Mother’s job (Stay-at-home)
Professional 0.080∗ (0.045) 1.793 0.078∗ (0.044) 1.759
Other 0.003 (0.035) 0.078 −0.006 (0.035) −0.168
Missing −0.066 (0.047) −1.400 −0.068 (0.048) −1.427

Age −0.073∗∗∗ (0.010) −7.606 −0.078∗∗∗ (0.011) −7.168
Contextual effects
Female 0.011 (0.049) 0.221 0.072 (0.092) 0.779
Hispanic 0.060 (0.069) 0.868 0.353∗∗ (0.115) 3.081
Race (White)

Black 0.050 (0.058) 0.865 0.058 (0.075) 0.769
Asian 0.209 (0.186) 1.126 0.518 (0.579) 0.895
Other −0.137 (0.089) −1.537 −0.230 (0.185) −1.241

Mother’s education (High)
<High −0.269∗∗∗ (0.070) −3.841 −0.363∗∗ (0.158) −2.290
>High 0.072 (0.059) 1.213 0.062 (0.114) 0.540
Missing −0.077 (0.093) −0.835 −0.025 (0.197) −0.128

Mother’s job (Stay-at-home)
Professional −0.110 (0.080) −1.373 0.032 (0.157) 0.204
Other −0.101∗ (0.060) −1.686 −0.051 (0.114) −0.451
Missing −0.093 (0.085) −1.086 −0.006 (0.188) −0.029

Age 0.066∗∗∗ (0.006) 11.323 0.091∗∗∗ (0.010) 9.228

SE2 0.523 0.515

Network formation model
Same sex 0.456∗∗∗ (0.016) 28.208
Both Hispanic 0.343∗∗∗ (0.023) 14.739
Both White 0.320∗∗∗ (0.022) 14.741
Both Black 1.167∗∗∗ (0.032) 36.121
Both Asian 0.278∗∗∗ (0.043) 6.502
Mothers education <High 0.178∗∗∗ (0.018) 10.063
Mothers education >High 0.075∗∗∗ (0.016) 4.756
Mothers job Professional −0.130∗∗∗ (0.017) −7.544
Age absolute difference −0.648∗∗∗ (0.010) −64.105

Note: N = 3,126. Observed links = 17,993. Proportion of inferred network data = 77.7%. Significance
levels: ∗∗∗ = 1%, ∗∗ = 5%, ∗ = 10%. The explained variable is computed by taking the average grade
for English, Mathematics, History, and Science, letting A = 4, B = 3, C = 2, and D = 1. Thus, higher
scores indicate better academic achievement.
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