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ABSTRACT 
I present a model of peer effects in which the dependent variable takes integer values. I present 
an incomplete information game rationalizing the model, and I provide sufficient conditions 
under which the equilibrium of the game is unique. I estimate the model’s parameters using the 
Nested Partial Likelihood method. I show that the counting nature of the dependent variable is 
important and that assuming incorrectly that it is continuous significantly underestimates the 
peer effects. I estimate peer effects on the the number of extracurricular activities in which 
students are enrolled. Increasing the number of activities in which friends are enrolled by one 
implies an increase of 0.295 in the number of activities in which students are enrolled, when 
controlling for network endogeneity. Ignoring the endogeneity of the network overestimates 
the peer effects. 
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1 Introduction

There is a large and growing literature on peer effects in economics.1 Recent contributions include,

among others, models for limited dependent variables, including binary (e.g., Brock and Durlauf,

2001; Lee et al., 2014; Liu, 2019), ordered (e.g., Boucher et al., 2018), multinomial (e.g., Guerra and

Mohnen, 2017), and censored (e.g., Xu and Lee, 2015b) variables. To my knowledge, however, there

are no existing models for count variables with microeconomic foundations, despite these variables

being prevalent in survey data (e.g., Duncan et al., 2005; Daniels and Leaper, 2006; Mays et al., 2010;

Ali et al., 2011; Liu et al., 2012; Fujimoto and Valente, 2013; Liu et al., 2014; Fortin and Yazbeck,

2015; Boucher, 2016; Lee et al., 2020).

In this paper, I present a static game with incomplete information (see Harsanyi, 1967; Osborne

and Rubinstein, 1994) to examine a network model in which the dependent variable takes unbounded

integer values (0, 1, 2, . . . ). An example of variable is the number of occurrences of an event2 in a

constant period. The model generalizes the rational expectations model of Lee et al. (2014), which

is used to study peer effects on binary data. I show that the model’s parameters can be estimated

using the Nested Partial Likelihood (NPL) method (Aguirregabiria and Mira, 2007). I show that

the counting nature of the dependent variable is important and that assuming incorrectly that the

dependent variable is continuous significantly underestimates the peer effects. I estimate peer effects

on the number of extracurricular activities in which students are enrolled using the data set provided by

the National Longitudinal Study of Adolescent Health (Add Health). I control for network endogeneity.

I find that ignoring the endogeneity of the network overestimates the peer effects. Finally, I present an

easy-to-use R package—named CDatanet—for implementing the estimator and the network formation

model.3

I present a microeconomic model in which individuals have private information and in which they

can simultaneously choose their strategy. Individuals interact through a directed network and are

influenced by their belief over the choice of their peers. As in many discrete games (e.g., Xu and

Lee, 2015a; Liu, 2019), I assume that individuals do not directly choose the observed integer outcome.

Instead, they choose a latent variable that can be interpreted as an intention. This latent variable

determines the observed integer outcome (see also Maddala, 1986; Cameron and Trivedi, 2013).

I provide sufficient conditions under which the model game has a unique Bayesian Nash Equilibrium

(BNE). When the distribution of the outcome is almost degenerated such that the outcome takes only

two values, the structure of the game and the BNE are similar to Lee et al. (2014). The individuals’

beliefs represent a discrete distribution over the infinite set of possible count choices {0, 1, 2, . . . }. As
1For recent reviews, see Boucher and Fortin (2016), De Paula (2017), and Bramoullé et al. (2019).
2Number of cigarettes smoked, frequency of restaurant visits, frequency of participation in activities, etc.
3The package is available at github.com/ahoundetoungan/CDatanet.

2

https://github.com/ahoundetoungan/CDatanet


discussed by Reeves and Wellman (2012), the equilibrium belief computation may be cumbersome

when the strategy space is infinite. I show that the BNE only depends on the average belief (expected

outcome), which does not require computing the entire distribution of beliefs.

To estimate the model parameters, I rely on the Nested Pseudo Likelihood (NPL) algorithm pro-

posed by Aguirregabiria and Mira (2007). The estimation process is straightforward and can be readily

implemented. Moreover, it does not require computing the game equilibrium. I show that the estima-

tor is consistent, and I study its limit distribution.

Using Monte Carlo simulations, I show that modeling count data using a misspecified continuous

model, such as the Spatial Autoregressive Tobit (SART) model (see Xu and Lee, 2015b) or the stan-

dard Spatial Autoregressive (SAR) model (see Lee, 2004), significantly underestimates the peer effects.

A similar result (in a context of no social interactions) is also discussed by Cameron and Trivedi (2013)

as well as Hellerstein and Mendelsohn (1993). Ignoring the integer and the left-censoring nature of

count data leads to biased estimations.

I use the Add Health data to estimate peer effects on the number of extracurricular activities in

which students are enrolled. I find that increasing the number of activities in which a student’s friends

are enrolled by one implies an increase in the number of activities in which the student is enrolled by

0.295. As in the Monte Carlo study, I find that the SART and the SAR models underestimate peer

effects at 0.141 and 0.166, respectively.

I control for the endogeneity of the network using a two-stage estimation strategy. In the first

stage, I consider an dyadic linking model in which the probability of link formation between two stu-

dents depends, among others, on their gregariousness (see Graham, 2017; Breza et al., 2020). Using

a Markov Chain Monte Carlo (MCMC) approach, I simulate the posterior distribution of this gregar-

iousness. In the second stage, the estimator of gregariousness is included in the count data model as

a supplementary explanatory variable.4 I find that the network is endogenous and that ignoring the

endogeneity overestimates peer effects at 0.363.

This paper contributes to the literature on social interaction models for limited dependent variables.

The existing models deal with binary (e.g., Brock and Durlauf, 2001; Soetevent and Kooreman, 2007;

Lee et al., 2014; Xu and Lee, 2015a; Liu, 2019), censored (e.g., Xu and Lee, 2015b), and multinomial

outcomes (e.g., Guerra and Mohnen, 2017). As mentioned above, the model generalizes Lee et al.

(2014) and the number of values taken by the outcome is not bounded. Recently, Boucher et al.

(2018) studied peer effects on the formation of beliefs regarding college participation. The outcome is

polytomous ordered. However, as the number of parameters increases with the number of values taken

by the outcome, the estimation strategy of Boucher et al. (2018) could raise numerical issues when the
4I use the posterior distribution of the estimator of gregariousness to account for the uncertainty related to first-stage

estimation in the second stage.
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dependent variable takes many values.

The paper contributes to the extensive literature on social interactions by being the first to deal

with count variables. Existing papers studying the influence of social networks on a count outcome

rely on linear-in-means models in which the outcome is assumed to be continuous (e.g., Duncan et al.,

2005; Daniels and Leaper, 2006; Mays et al., 2010; Ali et al., 2011; Liu et al., 2012, 2014; Fortin and

Yazbeck, 2015; Boucher, 2016; Lee et al., 2020). As shown through the Monte Carlo study (see Section

4), peer effects may be underestimated when a continuous variable model is used (see also Cameron

and Trivedi, 2013; Hellerstein and Mendelsohn, 1993).

Importantly, in the literature on spatial autoregressive models for limited dependent variables,

cases of count data have been studied (e.g, Karlis, 2003; Liesenfeld et al., 2016; Inouye et al., 2017;

Glaser, 2017). These papers consider reduced form equations in which the dependent count variable is

spatially autocorrelated. However, the models are not based on any process (game) that explains how

the individuals choose their strategy, and thus how they are influenced by their peers. Therefore, the

reduced form cannot be interpreted as a best-response function, and the spatial dependence parameter

cannot be interpreted as peer effects.

The paper also contributes to the literature on peer effects models with endogenous networks.

Goldsmith-Pinkham and Imbens (2013) as well as Hsieh and Lee (2016) consider a Bayesian hierarchical

model to control for endogeneity. They use a MCMC approach to jointly simulate from the posterior

distribution of the network formation model parameters and the outcome model parameters. While this

method is efficient as the estimation is done in a single step, it can be cumbersome to implement with

a non-linear outcome model. In this paper, the method used to control for endogeneity can be easily

implemented regardless of the network formation and the outcome models. The network formation

model is estimated, in a first stage, separately from the outcome model estimation. Moreover, I provide

a way to properly estimate the variance of the estimator of the outcome model, which takes into account

the uncertainty of the estimation at the first stage.5

The remainder of the paper is organized as follows. Section 2 presents the microeconomic foundation

of the model based on an incomplete information network game. Section 3 addresses the identification

and the estimation of the model parameters. The link between this new model and the SART model

is also discussed. Section 4 documents the Monte Carlo experiments. Section 5 presents the empirical

results and the method used to control for the endogeneity of the network. Section 6 discusses some

limits, some areas for future research, and some general implications of the results. Section 7 concludes

this paper.
5The approach used to correct the variance at the second stage is similar in spirit to that of Johnsson and Moon

(2015).
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2 Incomplete Information Network Game

I present a game of incomplete information with social interactions. Let V = {1, . . . , n} be a set of n

players indexed by i and yi, the observed integer outcome of player i (e.g., the number of cigarettes

smoked per day or per week). As in Xu and Lee (2015a) and Liu (2019), I assume that the players do

not directly choose yi. Instead, they choose y∗i , a latent variable that determines the observed outcome

yi. This latent variable can be interpreted as an intention that leads to the observed choice yi (see

Maddala, 1986).

I assume that y∗i and yi are linked as follows:

Assumption 1. Let (aq)q∈N be a sequence given by a0 = −∞, a1 ∈ R, and aq = a1 + γ(q − 1) for

q ∈ N∗ and γ ∈ R∗+. If y∗i ∈ (aq, aq+1], then yi = q.

The outcome yi is called the count variable or count data. As in a binary game (e.g., Liu, 2019),

Assumption 1 sets yi = 0, if y∗i is not greater than some real value a1. When y∗i > a1, Assumption 1

implies that there are increasing boundaries a1, a2, . . . , such that yi = q, if y∗i ∈ (aq, aq+1]. A similar

assumption is also set to link a polytomous ordered variable to a latent variable (e.g., Amemiya, 1981;

Baetschmann et al., 2015; Boucher et al., 2018).

Assumption 1 restricts the boundaries to be equally spaced from a1; that is, a1, a1 + γ, a1 + 2γ, and

so on. This is stronger than the usual assumption for an ordered model, which allows the boundary

increment to vary (see Amemiya, 1981). However, two important points motivate such simplification.

First, if the increment varies, then the number of unknown parameters increases with the number of

values taken by yi. In practice, estimating the model can be cumbersome when the outcome takes

many values (see Boucher et al., 2018). As the count variable yi is unbounded, Assumption 1 fixes this

curse of dimensionality. Second, it is intuitively natural to set that the boundaries increase uniformly

by γ as the outcome yi increases uniformly by 1. This is different than for an ordered polytomous

variable, where the values are not numeric but can only be ranked. As a result, the increase between

two consecutive values is likely to be variable.

Interestingly, Assumption 1 also generalizes the binary outcome game of Lee et al. (2014). Indeed, if

γ =∞, then ar =∞ for r ≥ 2. In that case, yi can only take 2 values: yi = 0, if y∗i ≤ a1, and yi = 1

otherwise.

Individuals interact through a directed network. Let G = [gij ] be an n × n adjacency matrix,

where the (i, j)-th element is non-negative and captures the proximity of the individuals i and j in the

network. I define the peers of individual i as the set of individuals Vi = {j, gij > 0}. By convention,

nobody interacts with himself/herself, that is gii = 0 ∀ i ∈ V.

I assume that the individuals’ preferences can be characterized by the following linear-quadratic utility
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function:6

Ui = (ψi + εi) y
∗
i −

y∗2i
2︸ ︷︷ ︸

private sub-utility

+ λy∗i
∑
j 6=i

gijyj︸ ︷︷ ︸
social sub-utility

, (1)

where ψi, λ ∈ R, and εi is an idiosyncratic shock. The first two terms of the utility function (1) are

the private subutility, in which −1

2
y∗2i is the intention cost, and ψi + εi, an individual characteristic

(own marginal benefit). The marginal benefit is composed of ψi, an observable part by all players,

and εi, only observed by i. I assume that εi is identically and independently distributed over i with

a symmetric distribution, common knowledge among all the players. The third term is a social sub-

utility. It depends on the intention y∗i , the average of the peers’ outcomes
∑
j 6=i

gijyj , and the peer

effects parameter λ. Importantly, each individual i chooses the intention y∗i , but each is affected by

their peers’ outcomes yj , j ∈ V. As argued by Fortin and Boucher (2015), the utility function (1)

describes complementarity in social interactions if λ > 0 and substitutability in social interactions if

λ < 0. A similar utility function is used by Liu (2019) to model bivariate binary outcomes with social

interactions.

Individuals observe neither the private information εj of their peers, nor do they then observe the

outcome yj of their peers. The utility function (1) characterizes a game of incomplete information

(Bayesian game) in which the players form beliefs regarding their peers’ outcomes. Moreover, as the

players know the common distribution of their type, they form rational beliefs (see Lee et al., 2014;

Liu, 2019); that is, the probability that any player i puts on the event {yj = q}, q ∈ N, and i 6= j

corresponds to the true probability of realization of the event.

Individuals simultaneously choose their strategy y∗i as to maximize their expected utilities.

E (Ui|y∗i , εi, λ,ψ,G) = (ψi + εi) y
∗
i −

y∗2i
2

+ λy∗i
∑
j 6=i

∞∑
r=0

rgijpjr, (2)

where ∀ i ∈ V, ψ = (ψ1, . . . ψn)′, and ∀ i ∈ V, q ∈ N, piq = P(yi = q|λ,ψ,G). From the first-order

conditions (f.o.cs) of the expected utility maximization,

y∗i = λgiȳ + ψi + εi, (3)

where ∀ i ∈ V, gi = (gi1 . . . gin), ȳ = (ȳ1 . . . ȳn)′, and ȳi =

∞∑
r=0

rpir is the expectation of the outcome

yi.
6The linear-quadratic specification of the utility function is common for network games (e.g., Ballester et al., 2006;

Calvó-Armengol et al., 2009).
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Let y∗ = (y∗1 . . . y∗n)′, and ε = (ε1 . . . εn)′. The f.o.cs (3) is also equivalent to

y∗ = λGȳ +ψ + ε. (4)

Let Fε be the cumulative distribution function (cdf) of εi. As piq = P(y∗i ∈ (aq, aq+1)|λ,ψ,G) ∀ i ∈ V,

q ∈ N, the f.o.cs (3) implies

piq = Fε (λgiȳ + ψi − aq)− Fε (λgiȳ + ψi − aq+1) . (5)

It follows that any vector of beliefs (piq)q∈N
i∈V

characterizes a BNE (see Osborne and Rubinstein, 1994)

of the network game with the utility (1) if


piq = Fε (λgiȳ + ψi − aq)− Fε (λgiȳ + ψi − aq+1) ,

where ȳ = (ȳ1 . . . ȳn) and ȳi =

∞∑
r=0

rpir.
(6)

The BNE has an interesting characterization. Indeed, Equation (6) shows that there is a bijective

correspondence between the vector of beliefs (piq)q∈N
i∈V

and the expected outcome (ȳi)i∈V at equilibrium;

that is, the knowledge of the expected outcome is sufficient to compute the beliefs and vice versa. This

result has a very useful implication: to prove the uniqueness of the equilibrium belief, it is sufficient

to prove that the expected equilibrium outcome is unique.

In the following assumption, I define sufficient conditions that ensure the existence and the uniqueness

of the BNE.

Assumption 2. (i) εi
iid∼ N

(
0, σ2

ε

)
and (ii) |λ| < Cγ,σε

||G||∞
, where Cγ,σε =

σε

φ (0) + 2
∑∞
k=1 φ

(
γk
σε

) and

φ is the probability density function (pdf) of N (0, 1).

Note that Assumption 2 (i) imposes that εi’s distribution is normal. This is not a necessary condition,

but the proof of the equilibrium uniqueness requires to be specific about the distribution of εi. Other

distributions, such as logistic, can be used by adapting the proof. The normal distribution is chosen

to facilitate the comparison of this model with the SART or SAR models (see Section 3.3) and also to

deal with the endogeneity of the network (see Section 5.3).

Assumption 2 (ii) gives the upper bound of |λ|. This generalizes the restriction imposed on |λ| in other

rational expectations models for binary data. Indeed, due to an identification issue in the binary model,

it is assumed that σε = 1. If γ = ∞, then Assumption 2 (ii) implies that |λ| < 1

||G||∞φ(0)
, which is

the restriction set on |λ| in Lee et al. (2014) and Liu (2019). In addition, when G is row-normalized,

||G||∞ = 1, and the restriction on |λ| implies that |λ| < 1√
2π

. However, it is generally assumed in
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practice that |λ| < 1; that is, individuals will not experience an increase in their intention/outcome

greater than the increase in their peers’ outcomes. The restriction under the binary case is not stronger

than |λ| < 1.

Importantly, Assumption 2 (ii) is still somewhat weak when γ < ∞ and ||G||∞ = 1. As shown in

Section 3.1, γ and σε are closely linked and cannot be identified. Thus, to analyze the upper bound

Cγ,σε , I set γ = 1. Figure 1 plots C1,σε as a function of σε.7 One can notice that C1,σε ≈ 1, if

σε > 0.5. In that case, Assumption 2 (ii) is not much stronger than |λ| < 1. In contrast, when σε

is low, Assumption 2 (ii) implies a stronger restriction. For example, if σε = 0.3, then |λ| < 0.746.

To understand why the upper bound of |λ| must decrease together with σε, notice that
λ

σε
is a

multiplicative term in the marginal effect of peer expected outcomes giȳ on the individual expected

outcome ȳi. If σε decreases when λ is fixed, the marginal effect explodes (see Appendix B.2) and may

involve multiple equilibria.

Figure 1: C1,σε (upper bound of λ when γ = 1 and ||G||∞ = 1) as a function of σε
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0 1 2 3
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C
1,

σ ε

However, the condition σε < 0.5 is likely violated in practice when γ = 1. Indeed, σε is the standard

deviation of y∗i , conditional on ψi and giȳ. As y∗i takes values in disjoint intervals of range γ, the

standard deviation must be sufficiently large for y∗i to span several intervals. If σε is too low, yi will

not vary given ψi and giȳ.

In practice, a sufficient condition for the equilibrium uniqueness dealing with |λ| < 1 is that the

econometrician observes several different choices of yi, given the observable characteristics ψi and

average outcomes of the peers giȳ. This likely ensures that σε > 0.5.

Under Assumption 2, Fε(.) = Φ

(
.

σε

)
, where Φ is the cdf ofN (0, 1). The following theorem establishes

the existence and uniqueness of the pure strategy BNE of the incomplete information network game.
7I show in Appendix A.3 that Cγ,σε can be evaluated using the third Theta function (see Section 2 in Bellman, 2013)

available in most software.
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Theorem 1. Let L (ȳ) = (`1 (ȳ) . . . `n (ȳ))
′, where

`i (ȳ) =

∞∑
r=1

Φ

(
λgiȳ + ψi − ar

σε

)
for all i ∈ V. (7)

Under Assumptions 1 and 2, the incomplete information network game with the utility (1) has a

unique pure strategy BNE with the equilibrium strategy profile ye∗, given by ye∗ = λGȳe + ψ + ε,

where ȳe = (ȳe1 . . . ȳ
e
n) is the unique solution of ȳ = L (ȳ).

Proof. See Appendix A.

There are two important remarks concerning Theorem 1. First, the model generalizes the rational

expectations model proposed by Lee et al. (2014) for discrete binary outcomes. Indeed, if γ = ∞,

then pir = 0 for r ≥ 2 and i ∈ V. As a result, ȳi =
∞∑
r=0

rpir = pi1 ∀ i ∈ V, and ȳ = p1, where p1 =

(p11 . . . pn1). Under these considerations, Assumption 2 still ensures that the game has a unique BNE

with the equilibrium strategy ye∗, given by ye∗ = λGpe1 + ψ + ε, where pei1 = Φ

(
λgip

e
1 + ψi − a1

σε

)
for all i ∈ V. For σε = 1, this characterization of the equilibrium is the same as that of Lee et al.

(2014).

Second, the equilibrium belief is not necessary to compute the equilibrium strategy. The knowledge of

the first moment of yi at equilibrium is sufficient to compute the equilibrium strategy and the equilib-

rium belief. Although the outcome yi takes an infinite number of values, the equilibrium computation

requires solving a fixed point problem in Rn+ as in other rational expectation discrete games with social

interactions (see Lee et al., 2014; Guerra and Mohnen, 2017; Liu, 2019)

Theorem 1 guarantees that the mapping L has a unique fixed point, which is sufficient to compute the

BNE. This also suggests using the Nested Pseudo Likelihood (NPL) algorithm proposed by Aguirre-

gabiria and Mira (2007) to estimate the model. In the next section, I study the parameter identification

and present the model estimation strategy.

3 Econometric Model

This section presents the identification and estimation of the model. It also discusses the link between

the model and the SART model (Xu and Lee, 2015b) that is used when the data are left-censored at

0.

3.1 Identification

In this section, I describe restrictions on the model parameters that are necessary to ensure identifia-

bility. Let ψ = Xβ, where X = (x1 . . . xn)′ is an n×K-dimensional matrix of explanatory variables,
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and β is a K-dimensional vector of unknown parameters. The matrix X may also include the average

of the explanatory variables of the peers; that is, ψ = X̃β, where X̃ = [X, GX]. The coefficients of

GX represent the contextual effects (Manski, 1993).

The BNE characterization (6) becomes

piq = Φ

(
λgiȳ + x′iβ − aq

σε

)
− Φ

(
λgiȳ + x′iβ − aq+1

σε

)
. (8)

As a0 = −∞, and aq = a1 + γ(q − 1) for q ∈ N∗,

piq =


1− Φ

(
λgiȳ + x′iβ − a1

σε

)
if q = 0,

Φ

(
λgiȳ + x′iβ − a1 − γ(q − 1)

σε

)
− Φ

(
λgiȳ + x′iβ − a1 − γq

σε

)
if q ∈ N∗.

(9)

Estimating the model requires additional restrictions on the parameters. Equation (9) poses two

identification issues. First, Equation (9) does not change when λ, β, a1, γ, and σε are multiplied

by any positive number. To fix this identification issue, I set γ to one.8 Second, if the explanatory

variables include a constant, such that x′iβ = β1 +x2iβ2 + . . . xKiβK , the parameters β1 and a1 cannot

be identified because they enter the equation only through their difference. Therefore, I also set a1 = 0.

Following these restrictions, Assumption 1 can be simplified.

Assumption 1′. Let (aq)q∈N be a sequence given by a0 = −∞, aq = q−1 for q ∈ N∗. If y∗i ∈ (aq, aq+1],

then yi = q.

Under Assumptions 1′ and 2, the parameters θ =
(
λ,β′, σε

)′ are identified if Z = [Gȳ, X] is a full

rank matrix. Indeed, given the adjacency matrix G and the exogenous variable X, the parameters

θ =
(
λ,β′, σε

)′ and the alternative parameters θ̃ =
(
λ̃, β̃

′
, σ̃ε

)′
are equivalent if they lead to the same

BNE equilibrium; that is ȳ = ˜̄y, where ȳ and ˜̄y are the expected outcomes associated with θ and θ̃,

respectively. In addition, Theorem 1 ensures that ȳ and ˜̄y are uniquely determined by the fixed point

mappings. Then,

ȳ =

∞∑
r=1

Φ

(
λgiȳ + x′iβ − ar

σε

)
=

∞∑
r=1

Φ

(
λ̃gi ˜̄y + x′iβ̃ − ar

σ̃ε

)
, ∀ i ∈ V,(

λ

σε
− λ̃

σ̃ε

)
giȳ + x′i

(
β

σε
− β̃

σ̃ε

)
+ q

(
1

σε
− 1

σ̃ε

)
= 0, ∀ i ∈ V, q ∈ N. (10)

As Z is a full rank matrix, it follows from Equation (10) that σε = σ̃ε, λ = λ̃, and β = β̃, except for
8Alternatively, I could also set σε to one. However, this complicates the comparison of the model with the SAR and

SART models. Moreover, the restriction γ = 1 excludes the binary cases for which γ = ∞. Therefore, the restrictions
set in this section are only for the dependent variables defined as a counting variable (which excludes binary cases).
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zero-measure cases (see Bramoullé et al., 2009). Therefore, θ = θ̃.

In the next section, I present the strategy used to estimate θ, and I study the limit distribution of the

estimator.

3.2 Estimation

The estimation strategy is based on the NPL algorithm proposed by Aguirregabiria and Mira (2007)

and recently used by Lin and Xu (2017) and Liu (2019). If ȳ were observed, estimating the model

would result in a simple probit estimation by the maximum likelihood (ML) method. As ȳ is not

observed, the ML estimation requires computing ȳ; that is, solve a fixed point problem in Rn for each

proposal of θ. This may be computationally cumbersome for large samples. The NPL algorithm uses

an iterative process and does not require solving a fixed point problem.

Let L be the pseudo likelihood9 function in (θ, ȳ), defined as

L(θ, ȳ) =

n∑
i=1

∞∑
r=0

dir log(pir), (11)

where piq = Φ

(
λgiȳ + x′iβ − aq

σε

)
− Φ

(
λgiȳ + x′iβ − aq+1

σε

)
∀ i ∈ V, q ∈ N, and dir = 1, if yi = r

and dir = 0 otherwise. As I set above that ψ = Xβ, the mapping L can be redefined as L(ȳ,θ) =

(`1 (ȳ,θ) . . . `n (ȳ,θ))
′, where

`i (ȳ,θ) =

∞∑
r=1

Φ

(
λgiȳ + x′iβ − ar

σε

)
for all i ∈ V. (12)

The NLP algorithm consists of starting with a proposal ȳ0 for ȳ and constructing a sequence of estima-

tors (Qm)m≥1, defined as Qm = {θm, ȳm} form ≥ 1, where θm = arg max
θ
L(θ, ȳm−1) is the estimator

of θ at the m-th stage, and ym = L (ȳm−1,θm) is the estimator of ȳ at the m-th stage. In other

words, given the guess ȳ0, θ1 = arg max
θ
L(θ, ȳ0), and y1 = L (ȳ0,θ1); then θ2 = arg max

θ
L(θ, ȳ1),

y2 = L (ȳ1,θ2), . . .

The sequence Qm is well defined for any m > 1. Notice that each value of Qm requires evaluating the

mapping L only once. If (Qm)m≥1 converges, regardless of the initial guess ȳ0, its limit {θ̂, ˆ̄y} satisfies

the following two properties: θ̂ maximizes the pseudo likelihood L(θ, ˆ̄y) and ˆ̄y = L(θ̂, ˆ̄y).

As shown by Kasahara and Shimotsu (2012), a key determinant of the convergence of the NPL algo-

rithm is the contraction property of the fixed point mapping L guaranteed by Theorem 1. In practice,

when ||θ̂M − θ̂M−1||1 and ||ˆ̄yM − ˆ̄yM−1||1 are less than some tolerance values (for example 10−6), I

set θ̂ = θ̂M and ˆ̄y = ˆ̄yM . Aguirregabiria and Mira (2007) prove that the NPL estimator is root-n
9This is a pseudo likelihood because it is defined for any θ and ȳ, where ȳ is not necessary for the equilibrium

associated with θ (see Aguirregabiria and Mira, 2007).
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consistent and asymptotically normal. Their approach can be adapted to the current context. The

convergence and the limit distribution of θ̂ are given by the following proposition.

Proposition 1. Under regularity conditions (see Proposition 2 of Aguirregabiria and Mira, 2007), the

NLP estimator θ̂ is consistent, and

√
n(θ̂− θ0)

d→ N
(

0, (Σ0 + Ω0)
−1

Σ0

(
Σ′0 + Ω′0

)−1
)
, (13)

where θ0 is the true value of θ; Σ0 and Ω0 are given in Appendix B.1.

Proof. See Appendix B.1.

Some numerical aspects about the NLP estimator must be pointed out. First, the pseudo likelihood (11)

involves an infinite sum. However, note that this does not pose any numerical issues because diq = 0

for q 6= yi. Therefore, one only needs to compute piyi ; that is, one probability piq per individual at

q = yi. For this purpose, the pseudo likelihood can be redefined as L(θ, ȳ) =

n∑
i=1

log(piyi). Second,

the mapping L, which is used to compute the sequence (Qm) and the asymptotic variance of θ̂, also

involves an infinite sum. However, note that the summed elements decrease exponentially. A very

good approximation of these sums can be readily reached by only summing a few elements.

3.3 Link with the Spatial Autoregressive Tobit Model

In this section, I make the link between the count variable model and the SART model (see Xu and

Lee, 2015b). Tobit models are also used for counting responses because the data are left-censored at

0 (e.g., Jones, 1989). The SART model is given as follows:

y
∗
i = λgiy + x′iβ + εi,

yi = max {0; y∗i } .
(14)

Let us recall the f.o.cs (3).

y∗i = λgiȳ + x′iβ + εi. (15)

Equations (14) and (15) differ because giy, the average of the peers’ outcomes, is an explanatory

variable in (14) whereas giȳ, the expectation of the average of the peers’ outcomes, as explanatory

variable in (15). A misspecification of yi as max {0; y∗i } instead of Assumption 1′ is costless if the spec-

ification error is not correlated to the explanatory variable.10 Fundamentally, the difference between
10In contrast, the specification of the dependent variable following the standard SAR model can involve substantial

bias. Indeed, under the SAR model, yi = y∗i . Given that yi cannot be negative, this specification can be a source of bias
if the data contains many zeros (see Monte Carlo results in Section 4).
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both models appears in y in (14) instead of ȳ; that is, the expected outcome is approximated by the

observed outcome. Although y and ȳ could be very similar, the approximation of a continuous variable

by a discrete variable performs poorly in most cases when the count variable has a weak dispersion.

Therefore, I expect that estimating a SART model with data generated following the count response

model would involve classical bias: the smaller the dispersion of the dependent variable, the greater

the bias.

I compare both models via Monte Carlo experiments (see Section 4). The results show that the SART

model biases peer effects downward.

4 Monte Carlo Experiments

In this section, I conduct a Monte Carlo study to assess the performance of the NPL estimator in a

finite sample. I also compare the model to the spatial autoregressive Tobit (SART) and the standard

linear-in-mean spatial autoregressive (SAR) models.

I consider two types of data generating processes (DGP). The DGP of type A simulates many zeros,11

whereas the DGP of type B simulates few zeros. In both cases, the latent variables y∗i are defined as

follows:

y∗i = λgiȳ + β0 + β1x1i + β2x2i + γ1gix1 + γ2gix2 + εi,

where ȳ = L(ȳ,θ). The explanatory variables gix1 and gix2 are the averages x1 and x2, respectively,

among friends. Once y∗ is generated, I compute the count outcome y following Assumption 1′.

As pointed out in Section 3.3, the estimator of θ from the count data model may be close to that of

the SART model if the dependent variable has a large dispersion. To illustrate this through the Monte

Carlo study, I set two values for the parameter β̃ =
(
β′, γ′

)′ by type of DGP. This allows simulating

a count dependent variable with either low or high dispersion, depending on β̃. The values used for β̃

are presented in Table 1.

Table 1: Slope of the observed explanatory variables

Low dispersion High dispersion

Type A (-2, -2.5, 2.1, 1.5, -1.2) (-1, -6.8, 2.3, -2.5, 2.5)
Type B (1, 0.4, 0.5, 0.5, 0.6) (3, -1.8, 2.3, 2.5, 2.5)

This table presents the values of β̃ =
(
β′, γ′

)′ by type of DGP to simulate count data having either low or high
dispersion. For instance, to simulate data from the DGP of type B with a low dispersion, I set β = (1, 0.4, 0.5) and
γ = (0.5, 0.6).

The exogenous variables x1 and x2 are simulated from N (0, 4) and Poisson(3), respectively. I also
11When the proportion of zeros is very high, one may need zero-inflated or hurdle specifications (see Jones, 1989;

Lambert, 1992). I discuss this point in Section 6.3.
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consider several sample sizes, N ∈ {250, 750, 1500}. The adjacency matrix G is such that gij =
1

ni
,

if i is connected to j, and gij = 0 otherwise, where ni is the degree of i randomly chosen between

0 and 20 for N = 250, 0 and 35 for N = 750, and 0 and 50 for N = 1500. Figure 2 presents the

histogram of the simulated data for N = 1500. Data from a DGP of type A exhibit excess zeros (e.g.,

number of cigarettes smoked daily for low dispersion data or weekly for high dispersion data), whereas

data from a DGP of type B concern frequent events (e.g., number of recreational activities in which

students participated in the last school year for low dispersion data or the last two school years for

large dispersion data).

Figure 2: Simulated data using the count data model with social interactions
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I simulate each DG 1,000 times. The results can be replicated using my R package CDatanet and the

replication code.12

The Monte Carlo results show that the NPL estimator of the count data model performs well in finite

samples regardless of the type of DGP (see Tables 2 and 3). The estimator seems consistent. Moreover,

the model performs better when the dependent variable has a higher dispersion. This implies that the

data observation period may influence the results as a longer observation period would provide data

having a large range (see Hakim et al., 1991). I discuss how to control for this in Section 6.2.

When comparing the count data model to the SART and SAR models, it stands out that the SART and

SAR models bias the peer effects downward. The bias remains substantial in a large sample for both

types of DGP when the dependent variable has a lower dispersion. This suggests that the counting

nature of the data is important. In contrast, when the dependent variable has a large dispersion, the
12The package and the replication code are located at github.com/ahoundetoungan/CDatanet.
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SART model estimator is close to that of the count data model. However, the bias of the SAR model

is still large for the DGP of type A. Indeed, the SAR model does not control for the left-censoring

nature of the dependent variable.

5 Effect of social interactions on participation in extracurricular

activities

In this section, I present an empirical illustration of the model using a unique and now widely used

data set provided by the National Longitudinal Study of Adolescent Health (Add Health).

5.1 Data

The Add Health data provides national representative information on 7th–12th graders in the United

States (US). I use the Wave I in-school data, which were collected between September 1994 and April

1995. The surveyed sample is made up of 80 high schools and 52 middle schools. In particular, the

data provides information on the social and demographic characteristics of students as well as their

friendship links (i.e., best friends, up to 5 females and up to 5 males), education level, occupation of

parents, etc.

I remove self-friendships and friendships between two students from different schools. Moreover, an

important number of listed friend identifiers are missing or associated with "error codes."13 I therefore

remove from the study sample schools having many missing links and those having less than 100

students. I end up with 72,291 students from 120 schools. The largest school has 2,156 students, and

about 50% of the schools have more than 500 students. The average number of friends per student is

3.8 (1.8 male friends and 2.0 female friends).

The studied counting dependent variable is the number of extracurricular activities in which students

are enrolled. Students were presented with a list of clubs, organizations, and teams found in many

schools. The students were asked to identify any of these activities in which they participated during

the current school year or in which they planned to participate later in the school year. The students

do not observe the activities in which their peers plan to participate. Therefore, the studied dependent

variable is a good example for illustrating the model because the outcome is suited to a Bayesian game

used to address the model. Throughout the paper, I write "the number of extracurricular activities in

which students are enrolled" to mean the number of extracurricular activities in which the students

participate during the year or in which they plan to participate.
13In the recent literature, numerous papers have developed methods for estimating peer effects using partial network

data (e.g., Boucher and Houndetoungan, 2020). To focus on the main purpose of this paper, I do not address that issue
here.

15



Table 2: Monte Carlo simulations with low dispersion

CDSI(1) SART SAR
Statistic Mean Sd. Mean Sd. Mean Sd.

N = 250

Type A
λ = 0.4 0.399 0.171 0.270 0.141 0.193 0.139
β0 = −2 −2.009 0.441 −1.698 0.455 0.946 0.488
β1 = −2.5 −2.500 0.075 −2.543 0.076 −1.689 0.078
β2 = 2.1 2.100 0.072 2.133 0.073 1.534 0.084
γ1 = 1.5 1.499 0.313 1.300 0.281 0.887 0.286
γ2 = −1.2 −1.196 0.280 −1.016 0.247 −0.707 0.252
σε = 1.5 1.469 0.085 1.546 0.087 2.013 0.106

Type B
λ = 0.4 0.407 0.088 0.303 0.076 0.283 0.104
β0 = 1 0.984 0.454 1.806 0.451 1.911 0.492
β1 = 0.4 0.400 0.049 0.400 0.049 0.399 0.049
β2 = 0.5 0.500 0.057 0.501 0.058 0.500 0.058
γ1 = 0.5 0.496 0.127 0.537 0.126 0.545 0.130
γ2 = 0.6 0.588 0.164 0.738 0.148 0.754 0.178
σε = 1.5 1.480 0.071 1.528 0.072 1.523 0.071

N = 750

Type A
λ = 0.4 0.394 0.112 0.263 0.096 0.171 0.118
β0 = −2 −1.991 0.284 −1.685 0.298 0.945 0.334
β1 = −2.5 −2.500 0.042 −2.543 0.043 −1.684 0.047
β2 = 2.1 2.099 0.041 2.132 0.042 1.534 0.048
γ1 = 1.5 1.489 0.206 1.288 0.190 0.854 0.235
γ2 = −1.2 −1.193 0.181 −1.012 0.164 −0.679 0.201
σε = 1.5 1.490 0.049 1.564 0.050 2.028 0.062

Type B
λ = 0.4 0.399 0.064 0.292 0.057 0.275 0.085
β0 = 1 1.002 0.323 1.874 0.317 1.971 0.389
β1 = 0.4 0.401 0.028 0.401 0.028 0.400 0.028
β2 = 0.5 0.501 0.032 0.502 0.032 0.501 0.032
γ1 = 0.5 0.500 0.088 0.543 0.088 0.550 0.091
γ2 = 0.6 0.601 0.118 0.749 0.109 0.762 0.139
σε = 1.5 1.494 0.040 1.533 0.040 1.531 0.040

N = 1500

Type A
λ = 0.4 0.402 0.088 0.268 0.078 0.143 0.132
β0 = −2 −2.009 0.225 −1.705 0.234 0.930 0.271
β1 = −2.5 −2.500 0.029 −2.543 0.029 −1.682 0.030
β2 = 2.1 2.101 0.028 2.135 0.028 1.532 0.031
γ1 = 1.5 1.502 0.162 1.296 0.149 0.804 0.238
γ2 = −1.2 −1.200 0.141 −1.015 0.132 −0.632 0.217
σε = 1.5 1.496 0.035 1.569 0.036 2.030 0.042

Type B
λ = 0.4 0.401 0.056 0.288 0.050 0.272 0.074
β0 = 1 0.995 0.280 1.915 0.278 2.006 0.343
β1 = 0.4 0.401 0.020 0.401 0.020 0.400 0.020
β2 = 0.5 0.499 0.023 0.500 0.023 0.499 0.023
γ1 = 0.5 0.503 0.072 0.549 0.072 0.555 0.076
γ2 = 0.6 0.599 0.101 0.753 0.093 0.764 0.118
σε = 1.5 1.497 0.028 1.533 0.028 1.531 0.028

(1): CDSI stands for count data model with social interactions. The count data model is estimated using the NPL
method as described in Section 3.2, whereas the SART and the SAR models are estimated using the ML method. The
number of simulations performed is 1,000. The "Mean" column reports the average of the 1,000 estimations, and the
"Sd." column reports the standard deviation.
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Table 3: Monte Carlo simulations with high dispersion

CDSI(1) SART SAR
Statistic Mean Sd. Mean Sd. Mean Sd.

N = 250

Type A
λ = 0.4 0.401 0.032 0.387 0.033 0.306 0.092
β0 = −1 −1.007 0.492 −0.406 0.498 2.812 1.558
β1 = −6.8 −6.801 0.058 −6.807 0.058 −6.289 0.178
β2 = 2.3 2.298 0.061 2.300 0.061 2.146 0.100
γ1 = −2.5 −2.499 0.251 −2.591 0.256 −2.725 0.665
γ2 = 2.5 2.497 0.185 2.559 0.188 2.395 0.376
σε = 1.5 1.481 0.071 1.533 0.073 2.585 0.395

Type B
λ = 0.4 0.401 0.025 0.389 0.025 0.388 0.025
β0 = 3 2.986 0.439 3.610 0.443 3.663 0.436
β1 = −1.8 −1.800 0.048 −1.801 0.048 −1.798 0.049
β2 = 2.3 2.300 0.056 2.301 0.056 2.299 0.056
γ1 = 2.5 2.505 0.132 2.485 0.135 2.481 0.135
γ2 = 2.5 2.497 0.178 2.560 0.180 2.562 0.180
σε = 1.5 1.477 0.069 1.528 0.071 1.528 0.070

N = 750

Type A
λ = 0.4 0.400 0.024 0.384 0.023 0.299 0.078
β0 = 1 −0.999 0.356 −0.359 0.358 2.751 1.219
β1 = −6.8 −6.801 0.031 −6.807 0.031 −6.354 0.102
β2 = 2.3 2.300 0.034 2.302 0.034 2.169 0.056
γ1 = −2.5 −2.500 0.180 −2.607 0.179 −2.793 0.545
γ2 = 2.5 2.502 0.133 2.571 0.133 2.447 0.297
σε = 1.5 1.494 0.041 1.538 0.041 2.454 0.229

Type B
λ = 0.4 0.400 0.019 0.389 0.019 0.387 0.019
β0 = 3 2.991 0.314 3.632 0.316 3.681 0.316
β1 = −1.8 −1.801 0.028 −1.801 0.028 −1.800 0.028
β2 = 2.3 2.301 0.034 2.301 0.034 2.300 0.034
γ1 = 2.5 2.508 0.091 2.487 0.094 2.484 0.094
γ2 = 2.5 2.499 0.133 2.560 0.134 2.563 0.134
σε = 1.5 1.494 0.042 1.535 0.042 1.535 0.042

N = 1500

Type A
λ = 0.4 0.400 0.020 0.383 0.020 0.296 0.063
β0 = −1 −1.006 0.298 −0.339 0.299 2.717 1.006
β1 = −6.8 −6.801 0.023 −6.806 0.023 −6.381 0.072
β2 = 2.3 2.301 0.023 2.302 0.023 2.180 0.038
γ1 = −2.5 −2.501 0.148 −2.615 0.149 −2.828 0.441
γ2 = 2.5 2.504 0.106 2.576 0.107 2.475 0.231
σε = 1.5 1.496 0.029 1.536 0.029 2.391 0.158

Type B
λ = 0.4 0.400 0.016 0.387 0.016 0.385 0.016
β0 = 3 3.012 0.269 3.672 0.272 3.721 0.272
β1 = −1.8 −1.800 0.020 −1.800 0.020 −1.799 0.020
β2 = 2.3 2.300 0.023 2.301 0.023 2.300 0.023
γ1 = 2.5 2.500 0.074 2.477 0.075 2.474 0.076
γ2 = 2.5 2.498 0.106 2.563 0.107 2.566 0.107
σε = 1.5 1.224 0.012 1.239 0.011 1.239 0.011
σε = 1.5 1.498 0.029 1.536 0.028 1.536 0.028

(1): CDSI stands for count data model with social interactions. The count data model is estimated using the NPL
method as described in the Section 3.2, whereas the SART and the SAR models are estimated using the ML method.
The number of simulations performed is 1,000. The "Mean" column reports the average of the 1,000 estimations, and
the "Sd." column reports the standard deviation.
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Table 7 provides the data summary. Figure 3 in Appendix C presents the distribution of the number of

extracurricular activities in which the students are enrolled. It varies from 0 to 33 with an average of

2.4. Most students are enrolled in fewer than 10 activities. As observable characteristics, I consider age,

sex, indicator of being Hispanic, race, number of years spent at their current school, living with both

parents, mother’s education, and mother’s profession. Sex, race, mother’s education and profession

are discretized into subvariables.

5.2 Empirical estimation

I estimate the count data model as well as the SART and the SAR models by controlling for contextual

effects and school heterogeneity as fixed effects. It is well known that controlling for fixed effects in

a non-linear model leads to an inconsistent estimation because of the accidental parameter issue (see

Neyman and Scott, 1948; Lancaster, 2000). However, as argued by Lee et al. (2014) and Liu (2019),

school fixed effects can be included as dummy variables because the number of schools in the Add

Health data is low relative to sample size. Moreover, I remove schools having fewer than 100 students

from the data.

The estimation results without school heterogeneity are reported in Table 4, whereas those with school

heterogeneity are reported in Table 5. The comparison of log-likelihoods of both estimations confirms

that there is a school heterogeneity effect.14 As in the Monte Carlo study, the SART and SAR models

significantly underestimate the peer effects. Moreover, the estimation results of the SART and the SAR

models are quite similar. This is because the DGP of the number of extracurricular activities in which

students are enrolled is similar to the DGP of type B (see Section 4). As a result, the left-censoring

nature of the dependent variable is not too important.

The coefficient of the count data model cannot be interpreted directly. Policy makers may be interested

in the marginal effect of the explanatory variables on the expected number of extracurricular activities

in which students are enrolled.15 I present how to derive the marginal effects and the corresponding

standard errors for the count data model in Appendix B.2.

The results confirm that an increase by one in the number of activities in which friends are enrolled

implies an increased number of activities in which the students are enrolled of 0.363 (when controlling

for school fixed effects). However, the SART and the SAR models underestimate this effect at 0.157

and 0.185, respectively. This result implies that the counting nature of the dependent variable is

important.

Moreover, the own control variables are also significant. For instance, older students participate less
14This result is found using the likelihood ratio test. The test statistic is compared with the value of the Chi-squared

distribution table for 119 degrees of freedom.
15Notice that only the estimators of the SART model’s parameters can be interpreted as marginal effects.
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in extracurricular activities, whereas Black and Asian students as well as students who have spent a

greater number of years at their current school participate more. It is also found that many contextual

effects are significant; for example, being a friend with male students increases one’s participation,

whereas being a friend with a student who has spent a greater number of years at their current school

decreases ones’s participation.

5.3 Endogeneity of the network

The estimation results above are based on the exogeneity of the network; that is, link formation

does not depend on the error term εi in Equation (3). This assumption is strong and may imply

inconsistent estimations (see Hsieh and Lee, 2016). To release this assumption, I consider a dyadic

linking model in which the probability of link formation between two students i and j is specified with

degree heterogeneity (e.g., Graham, 2017).

Let be A = [aij ], the network data, such that aij = 1, if i knows j, and aij = 0 otherwise. Let also the

latent variable a∗ij , given by a∗ij = ∆x′ijβ̄+µi+µj+ε∗ij , where ∆xij is a vector of observed dyad-specific

variables, β̄ contains the parameters associated with the dyad-specific variables, µi is an unobserved

individual-level attribute (gregariousness) that captures the degree heterogeneity, and ε∗ij
iid∼ logistic.

The latent variable a∗ij can be interpreted as a link formation utility. I assume that aij = 1, if a∗ij > 0.

Therefore, the probability of link formation between i and j, denoted Pij , is defined as

Pij =
exp

(
∆x′ijβ̄ + µi + µj

)
1 + exp

(
∆x′ijβ̄ + µi + µj

) . (16)

By convention, I set Pii = 0 and Pij = 0, if i and j come from different schools. A similar network

formation model can be found in McCormick and Zheng (2015) and Breza et al. (2020), where the

term ∆x′ijβ̄ is replaced by the distance between the individuals on a latent space.

As dyad-specific variables, I choose the absolute value of age difference, the absolute value of the

difference in the number of years spent at the current school, whether both students are of the same

sex, Hispanic, White, Black, Asian, and whether the mother’s job for both students is professional.

Importantly, the probability of link formation (16) is symmetric (Pij = Pji for any i, j ∈ V), but it

allows the network to be directed because ε∗ij 6= ε∗ji. This specification is different from that of Graham

(2017) in which ε∗ij = ε∗ji and aij = aji for all i, j ∈ V.

For any student i from school s, I assume that the unobserved attribute µi is random and distributed

according to N
(
uµs, σ

2
µs

)
. It is important to notice that the mean and the variance of µi vary across

schools. Such a specification enables the capturing of school heterogeneity (as fixed effects) in the

probability of link formation.

As pointed out in Hsieh and Lee (2016), the unobserved attributes µi may be correlated to the error
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Table 4: Application results without fixed effects

Parameters CDSI(1) SART SARCoef. Marginal effects Coef. Marginal effects

λ 0.668 0.549 (0.025)*** 0.249 0.203 (0.004)*** 0.237 (0.006)***

Own effects
Intercept 1.061 0.870 (0.096)*** 2.415 1.963 (0.07)*** 2.597 (0.094)***
Age −0.019 −0.016 (0.006)** −0.077 −0.063 (0.004)*** −0.075 (0.006)***
Male −0.237 −0.195 (0.017)*** −0.243 −0.198 (0.017)*** −0.208 (0.019)***
Hispanic 0.036 0.029 (0.027) 0.012 0.010 (0.02) 0.052 (0.029)*
Race

Black 0.250 0.205 (0.031)*** 0.210 0.170 (0.023)*** 0.235 (0.034)***
Asian 0.670 0.550 (0.035)*** 0.651 0.529 (0.023)*** 0.639 (0.039)***
Other 0.211 0.173 (0.029)*** 0.197 0.160 (0.023)*** 0.192 (0.033)***

Years at school 0.122 0.100 (0.008)*** 0.132 0.107 (0.005)*** 0.127 (0.008)***
With both par. 0.160 0.131 (0.020)*** 0.158 0.129 (0.019)*** 0.150 (0.022)***
Mother Educ.

<High −0.065 −0.054 (0.024)** −0.068 −0.055 (0.024)** −0.054 (0.027)**
>High 0.376 0.309 (0.02)*** 0.381 0.310 (0.021)*** 0.359 (0.022)***
Missing 0.222 0.182 (0.033)*** 0.206 0.167 (0.028)*** 0.240 (0.037)***

Mother job
Professional 0.211 0.174 (0.025)*** 0.219 0.178 (0.026)*** 0.197 (0.029)***
Other 0.058 0.047 (0.021)** 0.055 0.045 (0.021)** 0.041 (0.024)*
Missing −0.081 −0.066 (0.03)** −0.080 −0.065 (0.027)** −0.061 (0.033)*

Contextual effects
Age −0.078 −0.064 (0.004)*** −0.035 −0.028 (0.004)*** −0.042 (0.004)***
Male 0.108 0.088 (0.029)*** 0.013 0.010 (0.031) 0.051 (0.034)
Hispanic −0.153 −0.126 (0.039)*** −0.241 −0.196 (0.042)*** −0.217 (0.046)***
Race

Black −0.169 −0.139 (0.037)*** −0.095 −0.077 (0.035)** −0.102 (0.043)**
Asian −0.589 −0.484 (0.046)*** −0.447 −0.363 (0.047)*** −0.440 (0.058)***
Other −0.279 −0.229 (0.05)*** −0.229 −0.186 (0.061)*** −0.220 (0.061)***

Years at school −0.028 −0.023 (0.010)** 0.021 0.017 (0.01)* 0.021 (0.011)*
With both par. 0.069 0.057 (0.037) 0.244 0.198 (0.039)*** 0.226 (0.041)***
Mother Educ.

<High −0.222 −0.182 (0.042)*** −0.204 −0.166 (0.049)*** −0.175 (0.05)***
>High 0.019 0.016 (0.036) 0.250 0.203 (0.038)*** 0.239 (0.040)***
Missing −0.247 −0.203 (0.060)*** −0.152 −0.123 (0.064)* −0.099 (0.071)

Mother job
Professional 0.094 0.078 (0.045)* 0.272 0.221 (0.051)*** 0.252 (0.054)***
Other −0.006 −0.005 (0.036) 0.107 0.087 (0.041)** 0.093 (0.044)**
Missing −0.030 −0.024 (0.053) 0.067 0.055 (0.056) 0.054 (0.064)

σε 2.426 2.447 2.315

N 72,291 72,291 72,291
log-likelihood −159, 923.7 −160, 606.6 −163, 430.3
Fixed effects No No No

(1): CDSI stands for count data model with social interactions. The count data model is estimated using the NPL
method as described in Section 3.2, whereas the SART and the SAR models are estimated using the ML method. Under
the CSDI and the SART models, the column Coef. refers to the parameter values, while both columns of marginal effects
refer to the marginal effects with their corresponding standard errors reported in parentheses. The columns under SAR
report the parameter values (equal to the marginal effects) of the SAR model, with their standard error reported in
parentheses. The codes ***, **, * mean that the corresponding parameter is significant at 1%, 5%, and 10%, respectively.
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Table 5: Application results with fixed effects

Parameters CDSI(1) SART SARCoef. Marginal effects Coef. Marginal effects

λ 0.443 0.363 (0.028)*** 0.194 0.157 (0.005)*** 0.185 (0.006)***

Own effects
Age −0.049 −0.040 (0.008)*** −0.073 −0.059 (0.006)*** −0.061 (0.009)***
Male −0.253 −0.207 (0.017)*** −0.261 −0.212 (0.018)*** −0.225 (0.019)***
Hispanic 0.123 0.101 (0.026)*** 0.128 0.104 (0.021)*** 0.158 (0.03)***
Race

Black 0.309 0.253 (0.031)*** 0.308 0.250 (0.025)*** 0.312 (0.035)***
Asian 0.701 0.576 (0.035)*** 0.704 0.572 (0.025)*** 0.689 (0.04)***
Other 0.220 0.181 (0.028)*** 0.217 0.176 (0.024)*** 0.209 (0.033)***

Years at school 0.120 0.099 (0.007)*** 0.120 0.097 (0.006)*** 0.112 (0.009)***
With both par. 0.158 0.129 (0.019)*** 0.153 0.124 (0.019)*** 0.149 (0.022)***
Mother Educ.

<High −0.044 −0.036 (0.024) −0.045 −0.036 (0.025) −0.033 (0.027)
>High 0.392 0.321 (0.019)*** 0.389 0.316 (0.021)*** 0.369 (0.022)***
Missing 0.231 0.190 (0.032)*** 0.214 0.174 (0.029)*** 0.246 (0.037)***

Mother job
Professional 0.236 0.193 (0.025)*** 0.238 0.193 (0.026)*** 0.217 (0.029)***
Other 0.069 0.057 (0.02)*** 0.069 0.056 (0.022)*** 0.057 (0.024)**
Missing −0.064 −0.052 (0.029)* −0.063 −0.051 (0.028)* −0.042 (0.033)

Contextual effects
Age −0.064 −0.052 (0.005)*** −0.032 −0.026 (0.004)*** −0.039 (0.005)***
Male 0.032 0.026 (0.030) −0.034 −0.027 (0.032) 0.011 (0.034)
Hispanic −0.048 −0.039 (0.042) −0.071 −0.057 (0.046) −0.059 (0.049)
Race

Black −0.085 −0.070 (0.039)* −0.028 −0.023 (0.038) −0.045 (0.045)
Asian −0.331 −0.272 (0.052)*** −0.219 −0.178 (0.054)*** −0.229 (0.062)***
Other −0.245 −0.201 (0.052)*** −0.208 −0.169 (0.063)*** −0.203 (0.061)***

Years at school −0.015 −0.012 (0.011) −0.002 −0.001 (0.011) −0.004 (0.013)
With both par. 0.165 0.135 (0.037)*** 0.239 0.194 (0.040)*** 0.228 (0.041)***
Mother Educ.

<High −0.180 −0.148 (0.043)*** −0.173 −0.141 (0.050)*** −0.147 (0.051)***
>High 0.190 0.156 (0.038)*** 0.299 0.243 (0.040)*** 0.286 (0.041)***
Missing −0.178 −0.146 (0.061)** −0.145 −0.118 (0.066)* −0.095 (0.072)

Mother job
Professional 0.257 0.211 (0.047)*** 0.341 0.277 (0.053)*** 0.321 (0.055)***
Other 0.076 0.062 (0.038)* 0.133 0.108 (0.043)** 0.124 (0.045)***
Missing 0.055 0.045 (0.054) 0.105 0.085 (0.059) 0.091 (0.064)

σε 2.394 2.425 2.295

N 72,291 72,291 72,291
log-likelihood −158, 963.9 −159, 881.0 −162, 744.4
Fixed effects Yes Yes Yes

(1): CDSI stands for count data model with social interactions. The count data model is estimated using the NPL
method as described in Section 3.2, whereas the SART and the SAR models are estimated using the ML method. Under
the CSDI and the SART models, the column Coef. refers to the parameter values, while both columns of marginal effects
refer to the marginal effects with their corresponding standard errors reported in parentheses. The columns under SAR
report the parameter values (equal to the marginal effects) of the SAR model, with their standard error reported in
parentheses. The codes ***, **, * mean that the corresponding parameter is significant at 1%, 5%, and 10%, respectively.
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term εi. In that case, there are unobserved variables (e.g., degree of student sociability) explaining

both link formation and the students’ participation in extracurricular activities. This violates the

exogeneity condition on G.

For any i, let ηi = (εi, µi)
′. The variable ηi is distributed according to a bivariate normal distribution.

Let Σµε be the covariance matrix of ηi.

Σµε =

 σ2
ε ρσεσµs

ρσεσµs σ2
µs

 , (17)

where ρ is the partial correlation between µi and εi. The error term εi can be rewritten as εi =

ρσε
µi − uµs
σµs

+ νi, where νi ∼ N
(
0, (1− ρ2)σ2

ε

)
, and Cov(µi, νi) = 0. Let µ̃i =

µi − uµs
σµs

. By looking

for more evidence of endogeneity, one can also control for the contextual effect of µ̃i. In that case,

εi = ρσεµ̃i + ρ̄σε ¯̃µi + ν̃i, where ¯̃µi is the average of µ̃i among i’s friends, ρ̄ is the partial correlation

between ¯̃µi and εi and ν̃i ∼ N
(
0, σ̄2

ε

)
. If µi or µj is correlated to εi, that is ρ 6= 0 or ρ̄ 6= 0, then

the network is endogenous. To control for endogeneity, µ̃i and ¯̃µi may simply be included in the

count data model as additional explanatory variables (see Johnsson and Moon, 2015; Boucher and

Houndetoungan, 2020). In that case, the BNE characterization (8) becomes

piq = Φ

(
λgiȳ + x′iβ + ρσεµ̃i + ρ̄σε ¯̃µi − aq

σ̄ε

)
− Φ

(
λgiȳ + x′iβ + ρσεµ̃i + ρ̄σε ¯̃µi − aq+1

σ̄ε

)
.

The paper now deals with a two-stage estimator. The first stage is based on a Bayesian approach.

Using MCMC, I simulate β̄, µi for any i ∈ V, uµs, and σ2
µs for s = 1, . . . , 120 from their posterior

distributions (see details in Appendix D.1). The simulations from the posterior distribution are then

used to draw µ̃i and ¯̃µi. At the second stage, the draws of µ̃i and ¯̃µi are used as additional explanatory

variables to estimate the count data model. It is important to remember that the asymptotic variance

of θ̂, derived in Appendix B.1, is conditional on the explanatory variables. In the current framework,

the asymptotic variance is conditional on G, X, and µ̃, the vector of µ̃i. This variance is no longer valid

because µ̃ is not observed. By replicating drawings of µi, uµs, and σ2
µs from the posterior distribution,

I correct the asymptotic variance. The approach I use is similar in spirit to that of Krinsky and Robb

(1986). The new variance accounts for the variability of µ̃i (see details in Appendix D.2).

The estimation results (controlling for schools’ heterogeneity and network endogeneity) are presented

in Table 6. The results are significantly different to those of Table 5. The parameters of the additional

explanatory variables are significantly different to zero at 1%. This confirms that the network is en-

dogenous.

Although friends incite participation in extracurricular activities, the sociability degree (gregarious-

ness) of the students also plays an important role. Students with high µi are more extroverted (more
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likely to form links) and also participate in more extracurricular activities.16 In contrast, introverted

students participate less in extracurricular activities. Similar evidence has been found in sociology

studies, which highlight that an individual’s gregariousness determines their participation in activ-

ities.17 As well, being friends of a highly gregarious student also increases one’s participation in

extracurricular activities.18

Peer effects are reduced when controlling for network endogeneity but remain significant. An increase

by one in the number of activities in which friends are enrolled implies an increase in the number of

activities in which students are enrolled of 0.295. The endogeneity of the network is also confirmed

with the models SART and SAR. However, they still underestimate peer effects at 0.141 and 0.166,

respectively.

To understand the decrease in peer effects, notice that λ could capture other effects if students’ gre-

gariousness is not included in the count data model. For example, λ can capture the effect of an

exogenous shock that increases students’ and peers’ gregariousness because students and their friends

will experiment and increase in their participation in extracurricular activities. This is similar to the

correlated effects (see Manski, 1993).

6 Discussions

In this section, I discuss some limits, some areas for future research, and some general implications of

the results.

6.1 Flexibly dispersed count variable model

The most commonly used models to study count data (without social interactions) are the Poisson

model and related models, such as the generalized Poisson (Consul and Jain, 1973) and Negative Bi-

nomial (Hilbe, 2011).19 The main difference between these models is in the way they fit the dispersion

of the dependent variable. The count data model of this paper is flexible in terms of dispersion fitting.

The fundamental feature of the Poisson model is the mean-variance equality conditional on the ex-

planatory variables (equidispersion). However, count variables generally have values across a large

range and have many low values. Therefore, their variance is sometimes greater than their mean
16Because ρσε, the sign of µ̃i is positive in the count data model.
17For example, specific personality traits are associated with activity participation (e.g., Newton et al., 2018); ex-

troverted people work more often in jobs having more social interactions (e.g., Pfeiffer and Schulz, 2011), and highly
gregarious individuals are more likely to be a member of a group (e.g., Erbe, 1962).

18Because ρ̄σε, the sign of giµ̃i is positive in the count data model.
19See also Cameron and Trivedi (1990); Böhning et al. (1999); Chang (2005) and Chiou and Fu (2013). Models of

the Poisson family that deal with spatial autocorrelation also exist (e.g., Karlis, 2003; Inouye et al., 2017). However, as
pointed out in the introduction, these models are not based on any microeconomic foundation. The spatial correlation
parameter cannot be interpreted as peer effects.
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Table 6: Application results controlling for fixed effects and network endogeneity

Parameters CDSI(1) SART SARCoef. Marginal effects Coef. Marginal effects

λ 0.359 0.294 (0.028)*** 0.173 0.141 (0.005)*** 0.166 (0.006)***
ρσε 0.246 0.202 (0.011)*** 0.253 0.205 (0.010)*** 0.240 (0.013)***
ρ̄σε 0.202 0.166 (0.019)*** 0.240 0.195 (0.018)*** 0.218 (0.020)***

Own effects
Age −0.049 −0.040 (0.008)*** −0.066 −0.053 (0.006)*** −0.061 (0.009)***
Male −0.241 −0.198 (0.017)*** −0.249 −0.202 (0.018)*** −0.213 (0.019)***
Hispanic 0.179 0.147 (0.027)*** 0.184 0.150 (0.022)*** 0.211 (0.031)***
Race

Black 0.557 0.457 (0.033)*** 0.564 0.458 (0.027)*** 0.552 (0.038)***
Asian 0.848 0.696 (0.035)*** 0.847 0.687 (0.026)*** 0.827 (0.041)***
Other 0.281 0.231 (0.028)*** 0.281 0.228 (0.024)*** 0.269 (0.033)***

Years at school 0.099 0.081 (0.007)*** 0.097 0.079 (0.006)*** 0.092 (0.009)***
With both par. 0.145 0.119 (0.019)*** 0.142 0.115 (0.019)*** 0.135 (0.022)***
Mother Educ.

<High −0.021 −0.017 (0.024) −0.021 −0.017 (0.025) −0.012 (0.027)
>High 0.377 0.309 (0.019)*** 0.376 0.305 (0.021)*** 0.354 (0.022)***
Missing 0.226 0.185 (0.032)*** 0.210 0.170 (0.029)*** 0.242 (0.036)***

Mother job
Professional 0.209 0.171 (0.024)*** 0.209 0.170 (0.026)*** 0.191 (0.029)***
Other 0.054 0.044 (0.020)** 0.056 0.045 (0.022)** 0.043 (0.023)*
Missing −0.060 −0.050 (0.029)* −0.058 −0.047 (0.028)* −0.041 (0.033)

Contextual effects
Age −0.075 −0.061 (0.005)*** −0.051 −0.041 (0.004)*** −0.056 (0.005)***
Male −0.002 −0.002 (0.029) −0.042 −0.034 (0.032) 0.002 (0.034)
Hispanic 0.002 0.001 (0.042) −0.009 −0.007 (0.047) −0.001 (0.049)
Race

Black 0.171 0.140 (0.043)*** 0.241 0.196 (0.042)*** 0.205 (0.048)***
Asian −0.114 −0.094 (0.055)* −0.013 −0.011 (0.055) −0.039 (0.064)
Other −0.157 −0.129 (0.053)** −0.122 −0.099 (0.063) −0.127 (0.061)**

Years at school −0.016 −0.013 (0.011) −0.010 −0.008 (0.011) −0.009 (0.013)
With both par. 0.153 0.126 (0.037)*** 0.207 0.168 (0.04)*** 0.193 (0.041)***
Mother Educ.

<High −0.152 −0.125 (0.043)*** −0.143 −0.116 (0.050)** −0.122 (0.051)**
>High 0.169 0.139 (0.038)*** 0.246 0.200 (0.040)*** 0.236 (0.041)***
Missing −0.147 −0.120 (0.062)* −0.124 −0.101 (0.065) −0.081 (0.071)

Mother job
Professional 0.205 0.168 (0.047)*** 0.269 0.218 (0.053)*** 0.246 (0.055)***
Other 0.034 0.028 (0.038) 0.083 0.067 (0.043) 0.072 (0.045)
Missing 0.037 0.030 (0.055) 0.083 0.067 (0.059) 0.065 (0.064)

σ̄ε 2.377 2.412 2.283

N 72,291 72,291 72,291
log-likelihood −158, 467.7 −159, 462.2 −162, 328.3
Fixed effects Yes Yes Yes

(1): CDSI stands for count data model with social interactions. The count data model is estimated using the NPL
method as described in Section 3.2, whereas the SART and the SAR models are estimated using the ML method. Under
the CSDI and the SART models, the column Coef. refers to the parameter values, while both columns of marginal effects
refer to the marginal effects with their corresponding standard errors reported in parentheses. The columns under SAR
report the parameter values (equal to the marginal effects) of the SAR model, with their standard error reported in
parentheses. The codes ***, **, * mean that the corresponding parameter is significant at 1%, 5%, and 10%, respectively.
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(overdispersion). In that case, Negative Binomial models offer a better fit to the data. The Neg-

ative Binomial specification has an additional parameter, which links the conditional mean to the

conditional variance as Var (yi) = ȳi +αȳ2
i , where ȳi = E(yi) and α > 0.20 In addition to the overdis-

persion, the generalized Poisson allows the variance to be smaller than the mean (underdispersion) as

Var (yi) =
ȳi

(1− α)2
, where max

(
−1, − ȳi

4

)
< α < 1. Under this specification, data are overdispersed

if α > 0 and underdispersed otherwise.

The specification of the relationship between the conditional mean and the conditional variance is im-

portant in this paper. The conditional mean ȳi is used to compute the explanatory variable of interest

of the model (see Equation 8). Misspecification of that relationship may involve classical bias, espe-

cially on the peer effect estimation. The new count variable model is flexible and allows equidispersion,

underdispersion, and overdispersion. From Theorem 1, it follows that

Var (yi) = ȳi + 2

∞∑
r=1

rΦ
(
ψ̂ir

)
− ȳ2

i︸ ︷︷ ︸
∆(σε)

, (18)

where ∀ i ∈ V, q ∈ N∗, and ψ̂iq =
λgiȳ + ψi − q + 1

σε
. The equation ∆(σε) = 0 does not have a

closed form, but ∆(σε) is increasing in σε. Depending on σε, the term ∆(σε) may be null, negative,

or positive. The parameter σε is a dispersion parameter for the new count data model as α is for the

generalized Poisson and Negative Binomial models.

For too-low ψ̂ir, overdispersion is possible when σε is large, but the underdispersion condition may

be violated as ȳi will decrease to 0. This is also the case of the generalized Poisson model in which

underdispersion is less frequent when ȳi decreases to 0.

6.2 Count data observation period

Data from "How many times do you smoke a day?" are not the same as those of "How many times do

you smoke a week?" The data observation period, commonly known as exposure time (Hakim et al.,

1991), is important when modeling count variables. Using daily or weekly data affects the results

and thus policy implications. The Monte Carlo study highlights that the estimator of the model

parameters performs better when the outcome takes values across a large range. Therefore, data from

a high exposure time may lead to a more precise estimator. If one does not control for the exposure

time, the interpretation of peer effects and the policy implications are only valid for the considered

exposure time.

In the traditional count data models (Poisson and Negative Binomial), this issue can be fixed using an
20Conditioning of the explanatory variables in the expectancy and the variance is omitted to simplify the notations.
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offset. This consists of adding the log of the exposure time as a supplementary explanatory variable

and constraining its coefficient to one (see Winkelmann and Zimmermann, 1995). In that case,
ȳi
e

does

not depend on the exposure time e, as ȳi is a log-linear function of explanatory variables. Since the

expected outcome ȳi of the new count variable model has a more complex function, the offset approach

cannot be used.

To make results comparable across exposure times for the new count variable model, the sequence

(aq)q∈N of Assumption 1′ may be redefined as a0 = −∞ and aq = e(q − 1) ∀ q ∈ N∗. Under this

specification, the distribution of
yi
e

does not depend on the exposure time. This way to control the

exposure time is more general because it scales not only the expected outcome of ȳi (as the offset

approach) but also the full distribution of yi.

6.3 Zero-inflated and Hurdle specifications

In applications with excess zeros, zero-inflated (see Lambert, 1992) or Hurdle (see Jones, 1989) spec-

ifications are suggested for modeling count data. These specifications assume that "zeros" could be

generated by processes other than those of the positive values. For instance, for the question "How

many times did you smoke during the last week?" smokers may report zero because they did not smoke

during that specific week. However, other individuals may report zero because they are non-smokers.

The first type of zeros are sampling, whereas the second type of zeros are structural. It may be impor-

tant to distinguish both processes because they do not have the same policy implications (see Tüzen

and Erbaş, 2018).

The zero-inflated and Hurdle specifications are given respectively by Equations (19) and (20).

piq =

wi + (1− wi)pi0 if q = 0,

(1− wi)piq if q ≥ 1,

(19)

piq =

wi if q = 0,

(1− wi)piq if q ≥ 1

, (20)

where wi is the probability of generating a structural zero.

The zero-inflated model assumes that there is a mix of sampling of structural zeros, whereas the Hurdle

specification allows only structural zeros. I refer the reader to Jones (1989) and (Lambert, 1992) for

more details. However, these specifications are not compatible with the microeconomic foundation of

the model. This could be investigated in future research.
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7 Conclusion

In this paper, I study a social network model for count data using a Bayesian game. I show that the

counting nature of the dependent variable is important, especially when the variable has a small range.

Assuming that this variable is continuous underestimates peer effects. However, bias decreases when

the range of the dependent variable is large.

I also study peer effects on the number of extracurricular activities in which a student is enrolled,

controlling for the endogeneity of the network. I find that an increase by one in the number of

activities in which friends are enrolled implies an increase in the number of activities in which students

are enrolled by 0.295, whereas the SART and SAR models underestimate this effect at 0.141 and 0.166,

respectively. I also show that ignoring the endogeneity overestimates the peer effects.

I present an easy to use R package that implements all the methods used in this paper.21 Although

this is, to my knowledge, the first paper to study count data with social interactions, there remain

many important challenges that are not addressed by this paper. In particular, this paper does not

consider zero-inflated specifications for data having excess zeros.

21The package is available at github.com/ahoundetoungan/CDatanet.
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Appendices

A Proof of the BNE uniqueness

To simplify the notations, I assume that f and F are the pdf and the cdf of N
(
0, σ2

ε

)
, respectively;

that is, f(.) =
1

σε
φ

(
.

σε

)
, and F(.) = Φ

(
.

σε

)
. In this Appendix, I proof the Theorem 1. To do so, I

first state and prove the following lemma.

Lemma 1. Let
(
peiq
)
i∈V
q∈N

be a belief system that verifies the BNE characterization (6), ȳei =

∞∑
r=0

rpeir

for all i ∈ V, and ȳe = (ȳe1 . . . ȳen). If εi
iid∼ N

(
0, σ2

ε

)
, then ȳe = L (ȳe).

A.1 Proof of Lemma 1

The mapping L is defined for any ȳ ∈ RN+ by L (ȳ) = (`1 (ȳ) . . . `n (ȳ))
′, where

`i (ȳ) =

∞∑
r=1

F (λgiȳ + ψi − ar) for all i ∈ V. (21)

As (peiq) verifies (6),

peiq = F (λgiȳ
e + ψi − aq)− F (λgiȳ

e + ψi − aq+1) ,

ȳei =

∞∑
r=0

rF (λgiȳ
e + ψi − ar)︸ ︷︷ ︸

S1

−
∞∑
r=0

rF (λgiȳ
e + ψi − ar+1)︸ ︷︷ ︸
S2

. (22)

Equation (22) holds by the fact that the both sums are finite. To prove this, let x < 0 with |x|

being sufficiently large. It follows that F(x) =

∫ x

−∞
f(t)dt < −

∫ x

−∞

t

σ2
ε

f(t)dt = f(x). Therefore,

S1 <

∞∑
r=r0

rf (giȳe + ψi − ar)︸ ︷︷ ︸
S3

, for some integer r0, is sufficiently large. In addition, S3 < ∞ because f

is a decreasing exponential function as r grows. Hence, S1 <∞. Analogously, S2 <∞.

ȳei =

∞∑
r=0

rF (λgiȳ
e + ψi − ar)−

∞∑
r=0

(r + 1)F (λgiȳ
e + ψi − ar+1) +

∞∑
r=0

F (λgiȳ
e + ψi − ar+1) ,

ȳei =

∞∑
r=1

rF (λgiȳ
e + ψi − ar)−

∞∑
r=1

rF (λgiȳ
e + ψi − ar) +

∞∑
r=0

F (λgiȳ
e + ψi − ar+1) ,

ȳei =

∞∑
r=1

F (λgiȳ
e + ψi − ar) =

∞∑
r=1

Φ

(
λgiȳ

e + ψi − ar
σε

)
. (23)

The proof is given by (23) because ȳei = `i (ȳe) for all i ∈ V. Hence, ȳe = L (ȳe).
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A.2 Proof of Theorem 1

The BNE characterization (6) implies that there is a bijection correspondence between the beliefs

and the expected outcome at equilibrium. Following this result, the key determinant of the proof is

to establish that the vector of equilibrium beliefs exists and that the vector of expected equilibrium

outcome is unique. This implies that there is a unique vector of equilibrium beliefs and a unique vector

of expected equilibrium outcome.

Let R∞ be the vector space of infinite sequences (α1, α2, α3, . . . ) of real numbers.22 To express the

characterization of the BNE (6) as a matrix, let us denote by pq = (p1q, . . . , pnq)
′, an n-dimensional

vector for any q ∈ N, p = (p′0,p
′
1,p
′
2,p
′
3, . . . )

′, h1 = (a0, a1, a2, a3, . . . )
′, h2 = (a1, a2, a3, a4, . . . )

′

infinite-dimensional vectors, and 1d, the d-dimensional vector of ones for any d ∈ N∗ or d = ∞. Let

also J = (0, 1, 2, 3, . . . ), an infinite-dimensional row-vector, and B = 1∞ ⊗ J ⊗G. Equation (6) in

matrix form is given by

p = Φ

(
λBp + 1∞ ⊗Ψ− h1 ⊗ 1n

σε

)
−Φ

(
λBp + 1∞ ⊗Ψ− h2 ⊗ 1n

σε

)
, (24)

where Φ is defined for any q = (q1, q2, q3, . . . ) ∈ R∞ as Φ(q) = (Φ(q1),Φ(q2),Φ(q3), . . . ).

Let C ⊂ R∞ defined by C :=

{
p
/
∀ i ∈ V and q ∈ N, piq ∈ [0, 1] and ∀ i ∈ V,

∞∑
r=0

pir = 1

}
. Note

that any belief system p ∈ C. Let also H be a mapping from C to itself, such that ∀ p ∈ C,

H (p) = Φ

(
λBp + 1∞ ⊗Ψ− h1 ⊗ 1n

σε

)
−Φ

(
λBp + 1∞ ⊗Ψ− h2 ⊗ 1n

σε

)
. (25)

Any p ∈ C is an equilibrium belief of the incomplete information network game with the utility (1) if

p = H (p). H is a continuous mapping from C to itself. The set C is a compact and convex nonempty

subset of the infinite dimensional normed space R∞. Schauder’s fixed point Theorem (generalization

of Brouwer’s fixed point Theorem to an infinite dimensional space) gives the existence of p (see Smart,

1980, Chapter 2). Thus, there exists pe ∈ C, such that pe = H (pe). By Lemma 1, there is also

ȳe = (ȳe1 . . . ȳ
e
n), where ȳei =

∞∑
r=0

rpeir, such that ȳe = L (ȳe).

I will show that u = L (u) has a unique solution. By the contraction mapping Theorem, it is sufficient

to prove that
∣∣∣∣∣∣∣∣∂L (u)

∂u′

∣∣∣∣∣∣∣∣
∞
< 1 for any u = (u1, . . . , un) ∈ Rn.

For all i and j,

∂`i (u)

∂uj
= λgij

∞∑
r=1

f (λgiu + ψi − ar)︸ ︷︷ ︸
f∗
i

,

22A natural generalization of Rk, k ∈ N∗ (see Halmos, 2012).
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∂`i (u)

∂uj
= λgijf

∗
i . (26)

From Equation (26),
∂L (u)

∂u′
is defined by

∂L (u)

∂u′
= λ


g11f

∗
1 . . . g1nf

∗
1

...
...

...

gn1f
∗
n . . . gnnf

∗
n

 .

It follows that

∣∣∣∣∣∣∣∣∂L (u)

∂u′

∣∣∣∣∣∣∣∣
∞

= |λ|max
i

|f∗i |
N∑
j=1

gij

 ,

∣∣∣∣∣∣∣∣∂L (u)

∂u′

∣∣∣∣∣∣∣∣
∞

= |λ|max
i
|f∗i |max

i


N∑
j=1

gij

 ,

∣∣∣∣∣∣∣∣∂L (u)

∂u′

∣∣∣∣∣∣∣∣
∞
≤ |λ|max

i
|f∗i |||G||∞. (27)

I will now focus on the term f∗i .

f∗i =

∞∑
r=1

f (λgiu + ψi − ar) ,

f∗i =

∞∑
r=1

f (mi + a1 − ar) ,

where m∗i = λgiu + ψi − a1. As aq = a1 + γ(q − 1) for any q ∈ N∗,

f∗i =

∞∑
r=1

f (mi − γ(r − 1)) , (28)

f∗i <

∞∑
k=−∞

f (m∗i + γk) . (29)

By the Poisson summation formula (see Bellman, 2013, Section 6)

∞∑
k=−∞

f (m∗i + γk) =

∞∑
k=−∞

f̂ (m∗i + γk) , (30)
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where f̂(.) is the Fourier transform of f(.) given by

f̂ (m∗i + γk) =

∫ ∞
−∞

f(γx+m∗i )e
−2πikxdx =

∫ ∞
−∞

1√
2πσε

e
− 1

2σ2ε
(γx+m∗

i )2−2πikx
dx. (31)

In Equation (31), i as subscript refers to the individual i, whereas i in the calculations refers to the

pure imaginary complex number, such that i2 = −1.

f̂ (m∗i + γk) =

∫ ∞
−∞

1√
2πσε

e
− 1

2σ2ε
(γ2x2+2m∗

i γx+(m∗
i )2+4πiσ2

εkx)dx,

f̂ (m∗i + γk) =

∫ ∞
−∞

1√
2πσε

e
− 1

2σ2ε
(γ2x2+2(m∗

i γ+2πiσ2
εk)x+(m∗

i )2)
dx,

f̂ (m∗i + γk) =

∫ ∞
−∞

1√
2πσε

e
− γ2

2σ2ε

(
x+

m∗
i γ+2πiσ2εk

γ2

)2

+ 1
2σ2εγ

2 (m∗
i γ+2πiσ2

εk)
2− 1

2σ2ε
(m∗

i )2

dx,

f̂ (m∗i + γk) =
1

γ
e

1
2σ2εγ

2 (m∗
i γ+2πiσ2

εk)
2− 1

2σ2ε
(m∗

i )2
∫ ∞
−∞

γ√
2πσε

e
− γ2

2σ2ε

(
x+

m∗
i γ+2πiσ2εk

γ2

)2

dx︸ ︷︷ ︸
=1

,

f̂ (m∗i + γk) =
1

γ
e

1
2σ2εγ

2 (m∗
i γ+2πiσ2

εk)
2− 1

2σ2ε
(m∗

i )2

,

f̂ (m∗i + γk) =
1

γ
e−2π2k2(σεγ )

2
+2πik

m∗
i
γ . (32)

By replacing the Fourier transform (32) in Equation (30), I have

∞∑
k=−∞

f (m∗i + γk) =
1

γ

∞∑
k=−∞

e−2π2k2(σεγ )
2
+2πik

m∗
i
γ =

1

γ

∞∑
k=−∞

e−2π2k2(σεγ )
2

e2πik
m∗
i
γ ,

∞∑
k=−∞

f (m∗i + γk) =
1

γ

(
1 +

−1∑
k=−∞

e−2π2k2(σεγ )
2

e2πik
m∗
i
γ +

∞∑
k=1

e−2π2k2(σεγ )
2

e2πik
m∗
i
γ

)
,

∞∑
k=−∞

f (m∗i + γk) =
1

γ

(
1 +

∞∑
k=1

e−2π2(−k)2(σεγ )
2

e−2πik
m∗
i
γ +

∞∑
k=1

e−2π2k2(σεγ )
2

e2πik
m∗
i
γ

)
,

∞∑
k=−∞

f (m∗i + γk) =
1

γ

(
1 +

∞∑
k=1

e−2π2k2(σεγ )
2
(
e−2πik

m∗
i
γ + e2πik

m∗
i
γ

))
. (33)

Let us focus on the term e−2πik
m∗
i
γ + e2πik

m∗
i
γ . By Euler’s formula (Zill and Shanahan, 2009),

e−2πik
m∗
i
γ + e2πik

m∗
i
γ = cos

(
−2πk

m∗i
γ

)
+ i sin

(
−2πk

m∗i
γ

)
+ cos

(
2πk

m∗i
γ

)
+ i sin

(
2πk

m∗i
γ

)
,

e−2πik
m∗
i
γ + e2πik

m∗
i
γ = cos

(
2πk

m∗i
γ

)
− i sin

(
2πk

m∗i
γ

)
+ cos

(
2πk

m∗i
γ

)
+ i sin

(
2πk

m∗i
γ

)
,

e−2πik
m∗
i
γ + e2πik

m∗
i
γ = 2 cos

(
2πk

m∗i
γ

)
. (34)
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By replacing (34) in (33), I get

∞∑
k=−∞

f (m∗i + γk) =
1

γ

(
1 + 2

∞∑
k=1

e−2π2k2(σεγ )
2

cos

(
2πk

m∗i
γ

))
,

∞∑
k=−∞

f (m∗i + γk) ≤ 1

γ

(
1 + 2

∞∑
k=1

e−2π2k2(σεγ )
2

)
=

∞∑
k=−∞

f (γk) , (35)

∞∑
k=−∞

f (m∗i + γk) ≤ f (0) +

−1∑
k=−∞

f (γk) +

∞∑
k=1

f (γk) ,

∞∑
k=−∞

f (m∗i + γk) ≤ f (0) + 2

∞∑
k=1

f (γk) , as f is symmetric.

∞∑
k=−∞

f (m∗i + γk) ≤
φ (0) + 2

∑∞
k=1 φ

(
γk
σε

)
σε

,

∞∑
k=−∞

f (m∗i + γk) ≤ 1

Cγ,σε
. (36)

From Equations (29) and (36),

f∗i <

∞∑
k=−∞

f (m∗i + γk) ≤ 1

Cγ,σε
. (37)

From Equations (27) and (37), ∣∣∣∣∣∣∣∣∂L (u)

∂u′

∣∣∣∣∣∣∣∣
∞
≤ |λ|max

i
|f∗i |||G||∞,∣∣∣∣∣∣∣∣∂L (u)

∂u′

∣∣∣∣∣∣∣∣
∞
<
|λ|||G||∞
Cγ,σε

,∣∣∣∣∣∣∣∣∂L (u)

∂u′

∣∣∣∣∣∣∣∣
∞
< 1 by Assumption 2 (ii). (38)

Hence, u = L (u) has a unique solution ȳe.

By Equation (6) and Lemma 1, it follows that p = H(p) also has a unique solution pe, such that

peiq = Φ

(
λgiȳ

e
j + ψi − aq
σε

)
− Φ

(
λgiȳ

e
j + ψi − aq+1

σε

)
due to the bijective correspondence between

the equilibrium belief and the equilibrium expected outcome associated with that belief.

As a result, the incomplete information network game with the utility (1) has a unique pure strategy

BNE with the equilibrium strategy profile ye∗ given by ye∗ = λGȳe + ψ + ε, where the equilibrium

belief system
(
peiq
)
i∈V
q∈N

is such that ȳei =

∞∑
r=0

rpeir is the unique solution of u = L (u).
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A.3 Exact computation of the upper bound in Assumption 2 (ii)

It is clear that Cγ,σε =
σε

φ (0) + 2
∑∞
k=1 φ

(
γk
σε

) =
1∑∞

k=−∞ f (γk)
.

The quantity
∞∑

k=−∞

f (γk) can be computed exactly using the third Theta function (see Bellman, 2013,

Section 2). From (35), it follows that

∞∑
k=−∞

f (γk) =
1

γ

(
1 + 2

∞∑
k=1

e−2π2k2(σεγ )
2

)
,

∞∑
k=−∞

f (γk) =
1

γ
θ3

(
0, e−2π2(σεγ )

2)
, (39)

where for any complex z and q ∈ R+, θ3 (z, q) is the third Theta function evaluated at (z, q). Therefore,

Cγ,σε =
γ

θ3

(
0, e−2π2(σεγ )

2) .
B Supplementary note on the econometric model

B.1 Consistency and limit distribution of the NLP estimator

The pseudo likelihood is given by

L(θ, ȳ) =

n∑
i=1

∞∑
r=0

dir log

{
Φ

(
z′iΛ− ar

σε

)
− Φ

(
z′iΛ− ar+1

σε

)}
, (40)

where z′i = (giȳ, x′i), Λ = (λ, β′)′, and θ = (Λ, σε)
′. Let θ0 be the true value of θ, and ȳ0 be the

expected outcome associated with θ. The first-order conditions of the pseudo likelihood maximization

give 
∂L(θ, ȳ)

∂Λ
=

n∑
i=1

∞∑
r=0

dir
fir − fi(r+1)

Fir − Fi(r+1)
zi = 0,

∂L(θ, ȳ)

∂σε
= −

n∑
i=1

∞∑
r=0

dir
mirfir −mi(r+1)fi(r+1)

σε
(
Fir − Fi(r+1)

) = 0,

(41)

where ∀ i ∈ V, q ∈ N, miq = z′iΛ − aq, fiq =
1

σε
φ

(
miq

σε

)
, and Fiq = Φ

(
miq

σε

)
. As L is continuous,

the consistency of the NPL estimator is ensured by the fact that plim

(
1

n
L(θ, ȳ)

)
is maximized at

θ = θ0 and ȳ = ȳ0, where plim stands for the probability limit.

Let us focus on the limit distribution. The Taylor expansion of
∂L(θ, ȳ)

∂θ
around θ0 gives

∂L(θ, ȳ)

∂θ
=
∂L(θ, ȳ)

∂θ

∣∣∣∣
θ0

+

(
∂2L(θ0, ȳ)

∂θ∂θ′

∣∣∣∣
θ0

+
∂2L(θ0, ȳ)

∂θ∂ȳ′

∣∣∣∣
θ0

∂ȳ

∂θ′

∣∣∣∣
θ0

)
(θ− θ0) +Op(1). (42)
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To simplify the notations of the partial derivatives, I will use
∂L(θ0, ȳ)

∂θ
to mean

∂L(θ, ȳ)

∂θ

∣∣∣∣
θ0

(this

notation is also applied to the second partial derivatives) and
∂ȳ0

∂θ′
to mean

∂ȳ

∂θ′

∣∣∣∣
θ0

. It follows that

√
n(θ− θ0) = −

(
1

n

∂2L(θ0, ȳ)

∂θ∂θ′
+

1

n

∂2L(θ0, ȳ)

∂θ∂ȳ′
∂ȳ0

∂θ′

)−1(
1√
n

∂L(θ0, ȳ)

∂θ
+Op

(
1√
n

))
. (43)

Let us first apply the central Theorem limit to the term
1√
n

∂L(θ0, ȳ)

∂θ
.

1√
n

∂L(θ0, ȳ)

∂θ
=

1√
n

n∑
i=1


∞∑
r=0

dir
f0
ir − f0

i(r+1)

F 0
ir − F 0

i(r+1)

zi

−
∞∑
r=0

dir
m0
irf

0
ir −m0

i(r+1)f
0
i(r+1)

σε

(
F 0
ir − F 0

i(r+1)

)


︸ ︷︷ ︸
v0
i

=
1√
n

n∑
i=1

v0
i ,

where ∀ i ∈ V, q ∈ N, m0
iq, f

0
iq, and F

0
iq are defined as in (41) but with θ = θ0.

E
(
v0
i |X,G

)
=


∞∑
r=0

(
f0
ir − f0

i(r+1)

)
zi

− 1

σε

∞∑
r=0

(
m0
irf

0
ir −m0

i(r+1)f
0
i(r+1)

)
 = 0, thus E

(
v0
i

)
= 0.

Let denote by Ai =

∞∑
r=0

(
f0
ir − f0

i(r+1)

)2

F 0
ir − F 0

i(r+1)

, Bi =

∞∑
r=0

(
m0
irf

0
ir −m0

i(r+1)f
0
i(r+1)

)2

σ2
ε

(
F 0
ir − F 0

i(r+1)

) , and

Ci = −
∞∑
r=0

(
f0
ir − f0

i(r+1)

)(
m0
irf

0
ir −m0

i(r+1)f
0
i(r+1)

)
σε

(
F 0
ir − F 0

i(r+1)

) .

Var
(
v0
i |X,G

)
= E

(
v0
iv

0′
i |X,G

)
=

Aiziz′i Cizi

Ciz
′
i Bi


︸ ︷︷ ︸

Σi

= Σi. (44)

By assuming that plim

(
1

n

n∑
i

Σi

)
exists and is equal to Σ0, it follows by the Lindeberg–Feller central

Theorem limit (see Chow and Teicher, 2003, p. 314) that

1√
n

∂L(θ0, ȳ)

∂θ

d→ N (0,Σ0) . (45)

Let us now focus on plim

(
1

n

∂2L(θ0, ȳ)

∂θ∂θ′

)
and plim

(
1

n

∂2L(θ0, ȳ)

∂θ∂ȳ′
∂ȳ0

∂θ′

)
.

By the law of large numbers applied to independent and non-identical variables (see Chow and Teicher,

2003, p. 124), plim

(
1

n

∂2L(θ0, ȳ)

∂θ∂θ′

)
= plim

(
1

n
Ed

(
∂2L(θ0, ȳ)

∂θ∂θ′

))
, where Ed is the expectation with
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respect to dir.

Ed

(
∂2L(θ0, ȳ)

∂θ∂θ′

)
= −

n∑
i=1

Σi =⇒ plim

(
1

n

∂2L(θ0, ȳ)

∂θ∂θ′

)
= −plim

(
1

n

n∑
i

Σi

)
= −Σ0. (46)

Analogously, plim

(
1

n

∂2L(θ0, ȳ)

∂θ∂ȳ′
∂ȳ0

∂θ′

)
= plim

(
1

n
Ed

(
∂2L(θ0, ȳ)

∂θ∂ȳ′

)
∂ȳ0

∂θ′

)
.

Ed

(
∂2L(θ0, ȳ)

∂θ∂ȳ′

)
= −λ

n∑
i=1

Aizigi
Bigi

 and
∂ȳ0

∂θ′
= S−1M, (47)

where S = In − λDG, In is the identity matrix of dimension n, D = diag

( ∞∑
r=1

f0
1r, . . . ,

∞∑
r=1

f0
nr

)
,

M = (DZ,b), Z = (Gȳ,X), and b =

(
−
∞∑
r=1

f0
1rm

0
1r

σε
, . . . , −

∞∑
r=1

f0
nrm

0
nr

σε

)′
. The partial derivative

∂ȳ0

∂θ′
is computed using the implicit definition of ȳ; that is, ȳ = L(ȳ,θ).

Assuming that plim

λ
n

n∑
i=1

AizigiS−1M

BigiS
−1M

 exists and is equal to Ω0,

plim

(
1

n

∂2L(θ0, ȳ)

∂θ∂ȳ′
∂ȳ0

∂θ′

)
= −Ω0. (48)

From Equations (43), (45), (46), and (48), it follows that

√
n(θ̂− θ0)

d→ N
(

0, (Σ0 + Ω0)
−1

Σ0

(
Σ′0 + Ω′0

)−1
)
. (49)

In a finite sample, an estimator of the asymptotic variance of θ̂ can be computed by

ÂsyV ar
(
θ̂
)

=
1

n

(
Σ̂ + Ω̂

)−1

Σ̂
(
Σ̂
′
+ Ω̂

′)−1

, (50)

where Σ̂ =
1

n

n∑
i

Σ̂i, Ω̂ =
λ̂

n

n∑
i=1

ÂizigiŜ−1M̂

B̂igiŜ
−1M̂

, and Σ̂i, Âi, B̂i, Ŝ, M̂ are defined as above by

replacing θ0 by θ̂.

B.2 Marginal effects and corresponding standard errors

The parameters θ cannot be interpreted directly. Policy makers may be interested in the marginal

effect of the explanatory variables on the expected outcome.

Let us recall the following notations: z′i = (giȳ, x′i) and Λ = (λ, β′)′. For any k = 1, . . . ,K + 1, let
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λk and zik be the k-th component in Λ and zi, respectively. The marginal effect of the explanatory

variable zik on ȳi, the expected outcome of the individual i is given by

δik(θ) =
∂ȳi
∂zik

=
λk
σε

∞∑
r=1

φ

(
z′iΛ− ar

σε

)
. (51)

As mentioned in Section 2, if for some q ∈ N∗, z′iΛ−aq = 0, then δi1(θ) >
λ√

2πσε
, and δi1(θ) explodes

if
λ

σε
is not constrained. Assumption 2 prevents such cases.

The standard error of δik(θ) can be computed using the Delta method.

The Taylor expansion of Equation (51) around θ0 is

δik(θ̂) = δik(θ0) +
∂δik(θ0)

∂θ′
(θ̂− θ0) +Op(θ̂− θ0),

where
∂δik(θ0)

∂θ′
stands for the derivative of δik(θ) with respect to θ applied to θ0.

As θ̂ is a consistent estimator of θ0 for large n,

δik(θ̂) ≈ δik(θ0) +
∂δik(θ0)

∂θ′
(θ̂− θ0),

δik(θ̂) ≈ δik(θ0) +

(
∂δik(θ0)

∂Λ′
,

∂δik(θ0)

∂σε

)
(θ̂− θ0). (52)

It follows that a consistent estimator of the standard error of δik(θ̂) is

Se
(
δik(θ̂)

)
=

√(
∂δik(θ̂)

∂Λ′
,

∂δik(θ̂)

∂σε

)
ÂsyV ar

(
θ̂
)(

∂δik(θ̂)

∂Λ′
,

∂δik(θ̂)

∂σε

)′
, (53)

where

∂δik(θ̂)

∂Λ′
=

ek
σε

∞∑
r=1

φ

(
z′iΛ̂− ar

σε

)
− λk
σ3
ε

z′i

∞∑
r=1

(
z′iΛ̂− ar

)
φ

(
z′iΛ̂− ar

σε

)
, (54)

∂δik(θ̂)

∂σε
=
λk
σ4
ε

∞∑
r=1

(
z′iΛ̂− aq

)2

φ

(
z′iΛ̂− ar

σε

)
− λk
σ2
ε

∞∑
r=1

φ

(
z′iΛ̂− ar

σε

)
, (55)

where ek is a row vector of dimension K + 1 with the k-th term equal to one and the other terms

equal to 0.

As in any non-linear model, the marginal effect depends on zi. I then report their average,
1

n

n∑
i=1

δik(θ̂),
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where

Se

(
1

n

n∑
i=1

δik(θ̂)

)
=

√
Qθ ∗ ÂsyV ar ∗Q′θ, (56)

and

Qθ =

(
1

n

n∑
i=1

∂δik(θ̂)

∂Λ′
,

1

n

n∑
i=1

∂δik(θ̂)

∂σε

)
. (57)

C Data summary

This section summarizes the data (see Table 7). The categorical explanatory variables are discretized

into several binary subvariables. For identification, the subvariables in italics are the omitted categories

in the econometric models.

Table 7: Data summary

Variable Mean Sd. Min 1st Qu. Median 3rd Qu. Max
Age 15.010 1.709 10 14 15 16 19
Sex

Female 0.503 0.500 0 0 1 1 1
Male 0.497 0.500 0 0 0 1 1

Hispanic 0.168 0.374 0 0 0 0 1
Race

White 0.625 0.484 0 0 1 1 1
Black 0.185 0.388 0 0 0 0 1
Asian 0.071 0.256 0 0 0 0 1
Other 0.097 0.296 0 0 0 0 1

Years at school 2.490 1.413 1 1 2 3 6
With both parents 0.727 0.445 0 0 1 1 1
Mother Educ.

High 0.175 0.380 0 0 0 0 1
<High 0.302 0.459 0 0 0 1 1
>High 0.406 0.491 0 0 0 1 1
Missing 0.117 0.322 0 0 0 0 1

Mother job
Stay at home 0.204 0.403 0 0 0 0 1
Professional 0.199 0.400 0 0 0 0 1
Other 0.425 0.494 0 0 0 1 1
Missing 0.172 0.377 0 0 0 0 1

Number of activities 2.353 2.406 0 1 2 3 33

The dependent variable is the number of extracurricular activities in which students are enrolled. It

varies from 0 to 33. However, most students declare that they participate in fewer than 10 extracur-

ricular activities (see Figure 3).

D Supplementary note on network endogeneity

In this section, I present the posterior distribution of the dyadic linking model parameters and show

how to simulate from this posterior distribution. I also present the new asymptotic variance of θ̂,
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Figure 3: Distribution of the number of extracurricular activities
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which includes the variability of µ̃i.

D.1 Posterior distribution of the dyadic linking model parameters

The likelihood of the model (16) is given by

L(A|∆X, β̄,µ) =

S∏
s=1

∏
i 6=j

exp
(
aijs(∆x′ijsβ̄ + µis + µjs)

)
1 + exp

(
∆x′ijsβ̄ + µis + µjs

) ,
where X is the matrix of dyad-specific variables, µ is the vector of unobserved individual-level at-

tributes, and the subscript s is used to denote the school s. The number of schools is S.

The joint distribution of (A,µ) conditionally on Θ =
(
∆X, β̄, uµ1, σ

2
µ1, . . . , uµS , σ

2
µS

)
can be defined

by

π(A,µ|Θ) ∝
S∏
s=1

∏
i6=j

exp
(
aijs(∆x′ijsβ̄ + µis + µjs)

)
1 + exp

(
∆x′ijsβ̄ + µis + µjs

) ns∏
i=1

1

σµs
exp

(
− 1

σ2
µs

(µis − uµs)2

) ,

where ns is the number of students in the school s.

I set a non-informative prior distribution on β̄ and conjugate prior on
(
uµs, σ

2
µs

)
; that is, π

(
β̄
)
∝ 1

and π
(
uµs, σ

2
µs

)
∝ 1

σµs
. Let Ξ be the vector containing β̄, µ, uµ1, σ

2
µ1, . . . , uµS , σ

2
µS . The posterior

distribution of Ξ is

π(Ξ|A,∆X) ∝
S∏
s=1

 1

σns+1
µs

∏
i6=j

exp
(
aijs(∆x′ijsβ̄ + µis + µjs)

)
1 + exp

(
∆x′ijsβ̄ + µis + µjs

) ns∏
i=1

exp

(
− 1

σ2
µs

(µis − uµs)2

) .
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To simulate from this posterior distribution, I use a MCMC approach that combines a Metropolis–

Hasting (Metropolis et al., 1953) and a Gibbs sampler (Gelfand and Smith, 1990).

Algorithm 1. The MCMC goes as follows:

1. Initialize β̄, µ, uµ1, σ
2
µ1, . . . , uµS , σ

2
µS to β̄(0), µ(0), u(0)

µ1 , σ
2(0)
µ1 , . . . , u

(0)
µS , σ

2(0)
µS , respectively.

2. For t, from 1 to T , where T is the number of simulations,

(a) Draw the proposal β̄∗ from N
(
β̄

(t−1)
, jumping scale

)
. Update β̄(t) by accepting β̄∗ with the

probability min
{

1, αβ̄

}
, where

αβ̄ =

S∏
s=1

∏
i6=j

exp
(
aijs∆x′ijsβ̄

∗) (
1 + exp

(
∆x′ijsβ̄

(t−1)
+ µ

(t−1)
is + µ

(t−1)
js

))
exp

(
aijs∆x′ijsβ̄

(t−1)
)(

1 + exp
(

∆x′ijsβ̄
∗

+ µ
(t−1)
is + µ

(t−1)
js

)) .
(b) For s = 1, . . . , S and i = 1, . . . , ns, draw the proposal µ∗is from N

(
µ

(t−1)
is , jumping scale

)
.

Update µ(t)
is by accepting µ∗is with the probability min {1, αµis}, where

αµis = exp

(
1

σ
2(t−1)
µs

(
µ

(t−1)
is − u(t−1)

µs

)2

− 1

σ
2(t−1)
µs

(
µ∗is − u(t−1)

µs

)2
)
×

∏
j 6=i

exp (aijsµ
∗
is)
(

1 + exp
(

∆x′ijsβ̄
(t)

+ µ
(t−1)
is + µ∗js

))
exp

(
aijsµ

(t−1)
is

)(
1 + exp

(
∆x′ijsβ̄

(t)
+ µ∗is + µ∗js

)) ,
and µ∗js = µ

(t−1)
js , if i < j, and µ∗js = µ

(t)
js , if i > j.

(c) For s = 1, . . . , S, use a Gibbs to update u(t)
µs from N

(∑ns
i=1 µ

(t)
is

ns
,
σ

2(t−1)
µs

ns

)
.

(d) For s = 1, . . . , S, use a Gibbs to update σ2(t)
µs from Inv − χ2

(
ns − 1,

ns∑
i=1

(
µ

(t)
is − u

(t)
µs

)2
)
.

(e) Update the jumping scales following Atchadé et al. (2005) to reach an acceptance rate equal

to 0.27.

In practice the MCMC converges very quickly. I perform T = 20,000 simulations and keep the last

10,000. As the number of parameters in the model is large (72,291 parameters µi, 120 parameters

uµs, 120 parameters σ2
µs and, an eight-dimensional vector β̄), I randomly choose some parameters and

present their posterior distribution in Figure 4.

45



Figure 4: Posterior distribution of the network formation model parameters
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This figure presents the posterior distribution of the coefficients of the observed dyad-specific variables as well as some
other parameters chosen at random. Students of similar age, Hispanic, Black, and Asian students, as well as students
who have spent a similar number of years at their current school are likely to form links. In contrast, students of the
same sex and white students are not likely to form links.
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D.2 Correction of the asymptotic variance

As the estimation in done in two steps, the uncertainty related to µ̃ should be taken into account to

correct the variance of the estimator at the second stage. The asymptotic variance, derived in Appendix

B.1, is conditional on the explanatory variables, which include estimations of µ̃. In other words, the

covariance of the estimator of θ̂ resulting from the NPL approach is given by Var
(
θ̂|G,X, µ̃

)
and

not Var
(
θ̂|G,X

)
.

To simplify the notations, I omit conditioning on G and X in this section; that is, I write Var
(
θ̂|µ̃

)
to mean Var

(
θ̂|G,X, µ̃

)
and Var

(
θ̂
)
to mean Var

(
θ̂|G,X

)
. Moreover, Eu (respectively Varu)

means that the expectation (respectively variance) is taken with respect to µ̃. It follows that

Var(θ̂) = E(θ̂θ̂
′
)−E(θ̂) E(θ̂)′,

Var(θ̂) = Eu

(
E(θ̂θ̂

′∣∣µ̃)
)
−E(θ̂) E(θ̂)′,

Var(θ̂) = Eu

(
E(θ̂θ̂

′∣∣µ̃)
)

+ Eu

(
E(θ̂

∣∣µ̃) E(θ̂
∣∣µ̃)′

)
−Eu

(
E(θ̂

∣∣µ̃) E(θ̂
∣∣µ̃)′

)
−E(θ̂) E(θ̂)′,

Var(θ̂) = Eu

(
E(θ̂θ̂

′∣∣µ̃)−E(θ̂
∣∣µ̃) E(θ̂

∣∣µ̃)′︸ ︷︷ ︸
Var(θ̂

∣∣µ̃)

)
+ Eu

(
E(θ̂

∣∣µ̃) E(θ̂
∣∣µ̃)′

)
−E(θ̂) E(θ̂)′︸ ︷︷ ︸

Varu
(
E(θ̂
∣∣µ̃)

)
,

Var(θ̂) = Eu

(
Var(θ̂

∣∣µ̃)
)

+ Varu

(
E(θ̂

∣∣µ̃)
)
. (58)

In Equation (58), the first component of the variance, Eu

(
Var(θ̂

∣∣µ̃)
)
is the variance of θ̂ due to the

NPL algorithm. This component does not include the uncertainty of µ̃. The second component of the

variance Varu

(
E(θ̂

∣∣µ̃)
)
is the variance due to the estimation of µ̃ at the first stage. To compute the

second component of the variance, I make the following Assumption.

Assumption 3. Let µ̃s be a draw of µ̃ from its posterior distribution and θ̂s be the estimator of θ0

associated with µ̃s. θ̂s is a consistent estimator of E(θ̂s
∣∣µ̃s).

Assumption 3 means that every estimator θ̂s associated with a draw µ̃s is a good estimator of E(θ̂s
∣∣µ̃s).

This is useful because with many draws µ̃s the sample variance of θ̂s will be a good estimator of

Varu

(
E(θ̂

∣∣µ̃)
)
. I also assume that the last 10,000 simulations from the posterior distribution at the

first stage are sufficient to summarize well the posterior distribution of µ̃s. Under these considerations,

the variance of θ̂s is

ÂsyV ar
(
θ̂s

)
=

1

S

S∑
s=1

Var(θ̂s
∣∣µ̃s) +

1

S − 1

T∑
s=1

(
θ̂s − ˆ̄θ

)(
θ̂s − ˆ̄θ

)′
, (59)

where µ̃1, . . . , µ̃S are S draws of µ̃ with replacement from the population of the 10,000 simulations
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kept at the first stage, and ˆ̄θ =
1

S

S∑
s=1

θ̂s. In practice, I set S = 5, 000.

In Table 6, I present the average ˆ̄θ and the variance ÂsyV ar
(
θ̂s

)
to summarize the distribution of

θ̂s. The same approach is used to compute the standard error of the marginal effects.
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