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1 Introduction

Building on the seminal contribution of Goldfeld and Quandt (1973), Hamilton (1989) has popular-

ized the use of regime-switching models in economics and finance. These models allow us to model

sharp changes in the dynamics of economic or financial time series by introducing a finite-valued

latent stochastic process that governs the evolution of the parameters of the time series model.

In most applications this latent process is a Markov chain and, consequently, Markov-switching

and hidden Markov models are sometimes used interchangeably with regime-switching models. In

the past twenty-five years, the emphasis in the literature has been on models with a relatively

low number of states — between two and four (e.g., Ang and Bekaert, 2002; Bauwens et al., 2014;

Dai et al., 2007). On one hand, this choice is motivated by parsimony because the number of

parameters in the transition matrix of the Markov chain increases quadratically with the number

of states. On the other hand, it is generally easier to attach an economic interpretation to a

low-dimensional state space (e.g., a Markov chain with two states can be be used to represent bull

and bear market regimes).

Rydén et al. (1998) showed that hidden Markov models can reproduce reasonably well most

of the stylized facts of financial return series. However, they also argue that the model seems

to be “doomed from the start” for replicating the high degree of persistence in volatility that is

empirically observed. This is because, similarly to traditional stationary autoregressive moving-

average models, regime-switching models based on a Markovian switching process have a short

memory, that is, they can only generate an autocorrelation function that eventually decays expo-

nentially. However, at finite lags the decay in this autocorrelation function can still potentially be

quite slow. For instance, past research has shown that a time series generated with a short mem-

ory process contaminated by occasional breaks can exhibit statistical properties that are akin to

those that would be obtained from a genuine long memory process (e.g., Diebold and Inoue, 2001;

Granger and Hyung, 2004; Mikosch and Starica, 2004; Perron and Qu, 2010; Starica and Granger,

2005). This observation explains why several studies in financial econometrics consider models in

which a low-dimensional regime-switching process is used as a way to govern time-variation in the

parameters of an existing econometric model. An example of such a combination is the regime-

switching generalized autoregressive conditional heteroskedasticity (GARCH) model (Gray, 1996;
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Haas et al., 2004).

An alternative to these types of models is to consider regime-switching processes with a high-

dimensional finite state space, such as the Markov switching multifractal (MSM) model proposed

by Calvet and Fisher (2004). These authors demonstrate that this process has the ability to

generate a high degree of volatility persistence and show that it outperforms GARCH, fractionally

integrated GARCH, as well as regime-switching GARCH models, when modeling exchange rate

volatility. Although these empirical results offer a motivation for considering pure regime-switching

specifications with a large number of states, very few models of this type have since been proposed

in the literature.

Building on the MSM approach, the objective of this article is to propose a new parsimonious

regime-switching volatility model with a high-dimensional finite state space: the factorial hidden

Markov volatility (FHMV) model. The volatility dynamics in this model originate from the prod-

uct of three components: a high-dimensional Markov chain driving volatility persistence, a jump

process capable of generating non-persistent changes in volatility, and a data-driven component

capturing the leverage effect. The structure of the Markov chain component shares some similari-

ties with the structure of the MSM model, because it is constructed by multiplying a large number

of independent two-state Markov chains. However, the specific formulation that we adopt leads to

four important differences. First, all of our two-state Markov chains are not constrained to take

identical values as in the MSM model. As a consequence, the support of the volatility distribution

in the FHMV model comprises thousands of points, whereas the MSM models implemented by

Calvet and Fisher (2004) only allows the volatility process to switch between at most eleven differ-

ent values. Second, the transition matrix of our Markov chain component is structured in such a

way that the multiplicity of the second largest eigenvalue can be greater than one. This distinctive

characteristic enables us to generate a high degree of volatility persistence, which translates into

a very slow decay of the autocorrelation function at finite lags. A further novelty of our approach

versus the MSM model is that we allow for non-persistent jumps and integrate a leverage effect.

As a final advantage, the FHMV model is specified in such a way that only one estimation of the

model is sufficient while several model estimations are required to select the optimal MSM process.

We perform an empirical analysis of fit and forecasting performance on return and realized
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volatility data from the Standard and Poor’s 500 Index (S&P 500), the Nasdaq Composite Index

(NASDAQ) and the USD/EUR exchange rate over the period 2000–2016. When modeling returns,

the fit of the FHMV model is superior to the MSM model in terms of information criteria and can

even surpass that of a regime-switching GARCH model with Student-t innovations. When mod-

eling realized variances, the FHMV model dominates multiplicative error models (MEM) (Engle,

2002) and heterogeneous autoregressive (HAR) processes (Corsi, 2009). Finally, the forecasting

comparison reveals that at any horizon (up to 100 days), the root mean squared forecast errors

(RMSFE) generated by the FHMV model with leverage effect are either significantly smaller or

comparable in size to the smallest errors produced by the best competing model.

The paper is structured as follows. Section 2 introduces the FHMV model, exposes its statistical

properties and relates it to the literature. Section 3 covers model estimation. Section 4 presents

the results of the in-sample fit and out-of-sample forecasting performance. Section 5 concludes.

An online supplementary appendix (SA) provides the proofs of the theoretical results contained

in the paper and background information about the empirical results and Markov chain models.

2 Model definition and properties

The FHMV model is designed to fit a time series of financial returns, taking into account their

time-varying volatility. It is also suitable to model directly a series of realized variances. Its

central component is a discrete-time positive latent stochastic process denoted by {Vt}. This

process corresponds to the latent variance of returns in the first case and to the expected value of

the realized variance in the second case. Before defining this component in detail, we introduce

the modeling framework that enables us to link it to either financial returns or realized variances.
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2.1 Basic model framework

2.1.1 Returns

Let rt, t = 1, . . . , T , denoted by {rt}, represent a time series of demeaned daily financial returns.

As is typical in the financial econometrics literature, we model rt as

rt =
√
Vtεt, (1)

where {εt} is an independent and identically distributed (i.i.d.) innovation process with mean 0

and variance 1, which is assumed to be independent of {Vt}.

2.1.2 Realized variances

Let {RVt} represent a time series of daily realized variances, computed for instance as the sum of

intraday squared returns. Because the realized variance is a positive process, we choose to model

it with a multiplicative error structure (Engle, 2002) as

RVt = Vtηt, (2)

where {ηt} is a positive i.i.d. innovation process with mean 1, which is assumed to be independent

of {Vt}. As argued by Engle (2002), the main advantage of the multiplicative error structure is

that the variable of interest is modeled without any transformation by a process that ensures its

positivity. MEM have been shown to perform well on realized volatility data by Engle and Gallo

(2006), Gallo and Otranto (2015) and Lanne (2006), among others.

Remark 1. The return model considered in Equation (1) implies a MEM for squared returns as

r2
t = Vtηt, where, in this specific context, ηt = ε2

t .
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2.2 Latent variance model

We first define the latent variance process {Vt} without a leverage component as this allows us to

study the main statistical properties of our model analytically. We model Vt as

Vt = σ2CtMt, (3)

where {Ct} is a Markov chain with a discrete state space satisfying E (Ct) = 1, and {Mt} is a

sequence of i.i.d. discrete random variables assumed independent of {Ct} and to satisfy E (Mt) = 1.

As a consequence, the parameter σ2 denotes the unconditional expectation of the return variance

process, that is, E (Vt) = σ2.

The economic interpretation that we attach to the model is one where volatility is impacted

by the arrival of news in the financial market, with varying degrees of importance from day to

day. The processes {Ct} and {Mt} are both used to capture the impacts of these news. The Ct

component captures the effect of news whose effect persists over time, whereas Mt represents the

impact of non-persistent news and can be interpreted as a jump component. These interpretations

become more apparent in Sections 2.2.1 and 2.2.2, where we define Ct and Mt, respectively.

2.2.1 Structure and interpretation of Ct

The process {Ct} is constructed as a product of N independent two-state Markov chains, denoted

by {C(i)
t }, i = 1, . . . , N :

Ct = c0

N∏
i=1

C
(i)
t , (4)

where c0 = 1/E
[∏N

i=1 C
(i)
t

]
is a normalizing constant ensuring that E (Ct) = 1. These Markov

chains are assumed to share the same 2× 2 transition probability matrix (t.p.m.)

P =

 p 1− p

1− p p

 , (5)
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where p ∈ (0, 1). However, they do not share the same state space as we assume that C
(i)
t ∈ {ci, 1},

where c1 > 1 and

ci = (1− θc) + θcci−1

= 1 + θi−1
c (c1 − 1), for i = 2, . . . , N and θc ∈ [0, 1].

The normalizing constant in Equation (4) is thus obtained as c0 =
[∏N

i=1 (1 + θi−1
c (c1 − 1)/2)

]−1
.

Note that c1 ≥ c2 ≥ . . . ≥ cN ≥ 1, which implies a hierarchical structure in the components of Ct.

For instance, if we say that the component C
(i)
t is turned ON at time t when C

(i)
t = ci and turned

OFF when C
(i)
t = 1, then C

(1)
t and C

(N)
t have, respectively, the greatest and weakest impact on

volatility when turned ON.

The two-state Markov chains {C(i)
t }, i = 1, . . . , N , are used to model the impact of news

arriving in the financial market, so that when any one of these chains is turned ON, volatility

increases proportionally to the news importance, measured by the value of ci. The impact of news

on volatility then persists for a number of time periods that follows a geometric distribution with

parameter p; in the applications reported in Section 4, the estimated value of p is very close to 1.

Remark 2. The Ct component consists of N two-state Markov chain components and can be ex-

pressed as logCt = log c0 +∑N
i=1 logC(i)

t . Because a two-state Markov chain can be represented as

an AR(1) process (see for instance Hamilton, 1994, chapter 22), the persistent volatility component

can be viewed as the sum of N autoregressive components. Interestingly, the paper by Ander-

sen and Bollerslev (1997) proposes to model log-volatility as an aggregation of AR(1) processes

and argues that (asymptotically) this structure can induce long-run dependence. Moreover, each

AR(1) process is interpreted as an information arrival flow process. Consequently, the persistent

component of the volatility of the FHMV model can be seen as a discrete version of their model,

which leads to a similar interpretation as well as to an analogous long-run dependence result. In

Theorem 1 and Proposition 1, we show that it can also be effective at slowing down the decay of

the autocorrelation function of {Vt}.

Remark 3. The persistent component is structured as a factorial hidden Markov (FHM) model

as defined in Ghahramani and Jordan (1997). In fact, FHM processes include multiple hidden
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Markov chains that evolve independently of each other and that are combined to produce the

final state. Moreover, the factorial structure can be seen as a particular case of the hierarchical

hidden Markov (HHM) structure proposed in Fine et al. (1998), which consists in layers of hidden

Markov chains. It must be emphasized that both the HHM and FHM models can be formulated

as a standard hidden Markov (HM) model. This follows from the fact that a combination of

low dimensional Markov chains can be reproduced by a single high dimensional Markov chain.

However, HHM and FHM models remain practical representations of a HM process because they

allow us to consider a large number of states more parsimoniously. A more detailed discussion of

HHM and FHM models in relation with the FHMV model is provided in the SA.

Following Remark 3, it can be seen that {Ct} corresponds to a Markov chain on a state space XC

with 2N elements, generated by the Kronecker product of the state spaces of {C(i)
t }, i = 1, . . . , N ,

that is, XC = c0 · {c1, 1} ⊗ {c2, 1} ⊗ · · · ⊗ {cN , 1}. Its 2N × 2N t.p.m., denoted by PC , is simply

PC = P⊗N ,

where P⊗N is the Nth Kronecker power of P (the kth Kronecker power of P is defined inductively

for k ∈ N by P⊗1 = P and P⊗k = P ⊗P⊗(k−1), k = 2, 3, . . .). Because we assume that p ∈ (0, 1),

PC is a positive matrix (i.e., all elements of PC are positive), which implies that {Ct} is an ergodic

Markov chain with a unique stationary distribution, which we denote by πC . Lemma 5 in the SA

implies that πC = 2−N12N , where 1n is used to denote the n-dimensional column vector of ones,

for n = 1, 2, . . ..

2.2.2 Structure and interpretation of Mt

The process {Mt} is defined to be a sequence of i.i.d. discrete random variables with probability

mass function

Pr (Mt = m0 ·mi) =


q(N − 1)−1, if i = 1, . . . , N − 1,

1− q, if i = N,
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where q ∈ (0, 1), m1 > 1,

mi = (1− θm) + θmmi−1

= 1 + θi−1
m (m1 − 1), for i = 2, . . . , N − 1,

and mN = 1. We assume that θm ∈ [0, 1], which implies that m1 ≥ m2 ≥ . . . ≥ mN = 1, and use

m0 as a normalizing constant to ensure E (Mt) = 1, which leads to m0 =
[
1 + q (m1−1)(1−θN−1

m )
(N−1)(1−θm)

]−1
.

We interpret {Mt} as a process capturing the non-persistent impact on volatility of the arrival

of news in the financial market. The parameter q corresponds to the probability of this type of news

arriving in a given time period. This news has a multiplicative impact on volatility, given by one

of the values m1, m2, . . ., mN−1, chosen with equal probabilities (ON states), with m1 representing

the greatest impact and mN−1 the weakest impact. The probability of no news arriving is 1 − q,

which is associated with mN = 1 (OFF state). In contrast to {Ct}, the impact of news generated

by the {Mt} process does not persist over time since it is an independent process. Consequently,

this component of the model serves to generate non-persistent jumps of different magnitudes on

volatility.

For further developments, it is convenient to express {Mt} in the form of a Markov chain. To

this end, let πM be the column vector of the N component probabilities

πM =

 q

N − 1 , . . . ,
q

N − 1︸ ︷︷ ︸
(N−1) terms

, 1− q


′

. (6)

Then, {Mt} can be expressed as a Markov chain with N × N t.p.m., PM = 1Nπ′M , on the

state space XM with N elements, where XM = m0 · {m1,m2, . . . ,mN}. Because q ∈ (0, 1), PM

is a positive matrix and {Mt} is an ergodic Markov chain with stationary distribution πM (see

Lemma 6 in the SA).

2.2.3 Markov chain structure of Vt

The latent return variance at time t, Vt, is the product of Ct and Mt, as specified in Equation (3),

hence it combines the effects on volatility of the arrival of persistent and non-persistent news in
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the financial market. Since {Vt} is a product of two independent ergodic Markov chains, it is

itself an ergodic Markov chain with
(
N · 2N

)
×
(
N · 2N

)
t.p.m., PV = PC ⊗ PM , on the state

space XV with N · 2N elements, where XV = σ2 · XC ⊗XM . Its stationary distribution is given by

πV = πC⊗πM (see Lemma 7 in the SA). Note that although {Vt} is potentially a high-dimensional

Markov chain (e.g., for N = 10, the number of states is 10,240), it is parsimoniously indexed by

only seven parameters, that is, {σ2, p, q, c1,m1, θc, θm}.

2.2.4 Volatility persistence

It is a well-known empirical fact that the volatility of returns on financial assets exhibits a high

degree of persistence (e.g., Mandelbrot, 1963; Bollerslev, 1986). In the FHMV model, volatility

persistence can be characterized by the speed at which Cov(Vt, Vt+k) approaches zero as k increases.

Let υ denote the N ·2N column vector of the elements of XV , and let Υ denote the (N ·2N)×(N ·2N)

diagonal matrix with the elements of υ on its diagonal (i.e., υ = Υ1N ·2N ). Then, based on standard

Markov chain theory (see Hamilton, 1994, chapter 22), we have

Cov(Vt, Vt+k) = π′V ΥP k
V υ − (π′V υ)2

(7)

= π′V Υ(P k
V − 1N ·2Nπ′V )υ, k = 1, 2, . . . ,

and Cov(Vt, Vt+k)→ 0 as k →∞.

Clearly, the rate at which the volatility tends to persist in time is directly related to the rate of

convergence of the matrix P k
V as k tends to infinity. It is well known that if γ denotes the second

largest eigenvalue (in absolute value) of PV , then |γ|k is the dominating term in its asymptotic rate

of convergence (see Poskitt and Chung, 1996). This observation led Rydén et al. (1998) to affirm

that hidden Markov models “can only produce series with exponentially decaying autocorrelation

functions,” and that these models are therefore “doomed from the start” for replicating the high

degree of persistence in volatility which is empirically observed. Although this affirmation holds

asymptotically, Theorem 1 shows that the particular structure that we introduce to construct the

Markov chain {Vt}, specifically the multiplication of N two-state Markov chains with identical

t.p.m., offers a way to slow down the convergence of P k
V as k = 1, 2, . . ..
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Theorem 1 (Rate of convergence of PV ). Let γ = 2p− 1 and ΠV = limk→∞P
k
V .

(i) Asymptotic limit of P k
V as k →∞:

ΠV = 1N ·2Nπ′V .

(ii) Nonasymptotic rate of convergence of P k
V as k = 1, 2, . . .:

‖P k
V −ΠV ‖∞ ≤ (1 + |γ|k)N − 1, (8)

where ‖·‖∞ is the maximum absolute row sum norm and, for γ ∈ [0, 1),

‖P k
V −ΠV ‖max =

(
(1 + γk)N − 1

)
‖πV ‖∞, (9)

with ‖πV ‖∞ = 2−N max{q/(N − 1), 1 − q}, where ‖·‖max is the max norm, that is, the

maximum absolute element of the given matrix.

(iii) Asymptotic rate of convergence of P k
V as k →∞:

P k
V −ΠV = O(kN−1|γ|k). (10)

Remark 4. From a linear algebra standpoint, N corresponds to the algebraic multiplicity of the

eigenvalue γ of the matrix PV , which is its largest eigenvalue (in absolute value) that is smaller

than 1. Note that the 2 × 2 matrix P also has an eigenvalue of γ = 2p − 1, but its algebraic

multiplicity is 1. Since N corresponds to the number of components used in the construction of

{Ct}, the algebraic multiplicity of the eigenvalue γ of the matrix PV increases by one unit each

time a component is added.

Theorem 1 shows that the number of latent components N impacts the rate of convergence of

P k
V as k = 1, 2, . . .. For instance, if N = 1, we have ‖P k

V −ΠV ‖∞ ≤ |γ|k and P k
V −ΠV = O(|γ|k).

Equations (8)–(10) indicate that higher values of N generally lead to a slower decay of P k
V as

k = 1, 2, . . ., and that the impact of a higher N is magnified the closer γ (or equivalently p) is to

1 (in the non-asymptotic case).
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2.3 Autocovariance structure and moments

Although the Markov chain process {Vt} exhibits a particular structure and has a high-dimensional

state space, it nevertheless remains a time-homogeneous Markov chain on a finite state space.

Consequently, the FHMV model for financial returns and realized variances presented in Sections

2.1 and 2.2 is included in the class of hidden Markov models. Accordingly, its autocovariance

structure, its conditional and unconditional moments, as well as its log-likelihood function can all

be computed in closed-form based on standard techniques.

2.3.1 Autocovariance structure

First, let us consider the autocovariance function of {r2
t } and {RVt}. Since r2

t and RVt share the

same multiplicative error structure (see Remark 1), the derivation of this function for these two

processes is treated at once in Proposition 1 by introducing a new variable xt that represents either

r2
t or RVt.

Proposition 1 (Autocovariance structure). Let xt = Vtηt, where Vt is defined by Equation (3)

and {ηt} is a positive i.i.d. random process with mean 1 and finite variance, which is assumed

independent of {Vt}, and let

φi =
(
ci − 1
ci + 1

)2
=
(

θi−1
c (c1 − 1)

θi−1
c (c1 − 1) + 2

)2

∈ [0, 1], i = 1, . . . , N.

For k = 1, 2, . . ., we have:

(i)

Cov(xt, xt+k) = Cov(Vt, Vt+k), (11)

(ii)

Cov(xt, xt+k) = σ4
(
N∏
i=1

(
1 + φiγ

k
)
− 1

)
, (12)

(iii)

Var(xt) = σ4
(
E[η2

t ]m2
0

(
N∏
i=1

(1 + φi)
)(

q

N − 1

N−1∑
i=1

m2
i + (1− q)

)
− 1

)
, (13)

(iv)

Corr(xt, xt+k) =
∏N
i=1

(
1 + φiγ

k
)
− 1

E[η2
t ]m2

0

(∏N
i=1 (1 + φi)

) (
q

N−1
∑N−1
i=1 m2

i + (1− q)
)
− 1

,

where γ = 2p− 1, p being the parameter of the t.p.m. defined in Equation (5).
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Remark 5. Equation (11) indicates that the autocovariance function of {r2
t } or {RVt} decays at

the same rate as that of {Vt}. Equation (7) implies that this decay is governed by the rate of

convergence of the matrix P k
V as k tends to infinity, which itself slows down when the number of

components N increases (see Theorem 1). The particular structure of the latent variance process

therefore offers a way to capture varying degrees of persistence in the data, and this is an important

motivation for this structure. In fact, as can be seen in the empirical applications of Section 4,

the FHMV model very well mimics the autocorrelation structure of squared returns and realized

variances.

To determine more explicitly how the number of components N impacts on the autocovariances,

let us consider two FHMV models differing by only one latent component. If both models share the

same parameters, σ2, p and ci, i = 1, . . . , N −1, then the autocovariances of the model with N −1

components, denoted by CovN−1(xt, xt+k), are always smaller than or equal to the autocovariances

of the model with one extra component, denoted by CovN(xt, xt+k), since we have

CovN(xt, xt+k) =
(
1 + φNγ

k
)
σ4
(
N−1∏
i=1

(
1 + φiγ

k
)
− 1

)
+ φNγ

kσ4

= (1 + φNγ
k) CovN−1(xt, xt+k) + φNγ

kσ4

≥ CovN−1(xt, xt+k).

We remark that if the impact of the extra component on volatility is marginal, that is, cN ≈ 1, then

φN ≈ 0 and CovN(xt, xt+k) ≈ CovN−1(xt, xt+k). Therefore, if more components than necessary are

considered in the model, these superfluous components will not artificially inflate the dependence

structure.

Another interesting feature of Proposition 1 follows from Equation (13) because it shows that

the excess kurtosis typically observed in financial returns can be captured either by the latent

components Ct and Mt, or by E(η2
t ) (note that in the case of returns, E(η2

t ) is the fourth moment

of εt).
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2.3.2 Moments

Of particular interest is the conditional moment forecast of xt+h, for h = 1, 2, . . ., based on the

available information up to time t (as in Section 2.3.1, xt represents either r2
t or RVt). To com-

pute this forecast, one must first obtain the vector of filtered probabilities, denoted by ξt|t, using

standard filtering techniques developed for hidden Markov models (e.g., Hamilton, 1994, chapter

22). Let υ1, υ2, . . . , υN ·2N denote the elements of υ, and let ξt+h|t be the N · 2N column vector

with elements

ξi,t+h|t = Pr (Vt+h = υi | xt, xt−1, . . .) , i = 1, . . . , N · 2N , (14)

where h = 0, 1, . . .. These conditional forecast probabilities are directly obtained from the filtered

probabilities since ξ′t+h|t = ξ′t|tP
h
V for h = 1, 2, . . .. It is then simple to compute the conditional

moment forecast, E [g(xt+h) | xt, xt−1, . . .], for any real-valued function g(·) from the following

expression:

E [g(xt+h) | xt, xt−1, . . .] =
N ·2N∑
i=1

ξi,t+h|t E [g(υiηt+h)] . (15)

When g(x) = xr, Equation (15) simplifies to E
[
xrt+h

∣∣∣ xt, xt−1, . . .
]

= E
[
ηrt+h

]∑N ·2N

i=1 ξi,t+h|t υ
r
i .

Finally, to compute unconditional moments one must simply replace the probability vector ξt+h|t

by the stationary distribution πV (in fact, ξt+h|t → πV as h→∞).

2.4 Relationship to the MSM model

Since the construction of the FHMV model is motivated by the success of the MSM approach of

Calvet and Fisher (2004), it is instructive to relate it to the MSM model. The MSM process was

initially proposed as a model for financial returns, and it thus admits the general form given in

Equation (1). Its latent variance is specified as Ṽt = σ̃2∏N
i=1 C̃

(i)
t , where for i = 1, . . . , N :

C̃
(i)
t =



C̃
(i)
t−1, with probability p̃i,

c̃, with probability (1− p̃i)/2,

2− c̃, with probability (1− p̃i)/2,
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with c̃ ∈ (0, 1), and p̃i = (1 − ã)b̃i−1
for i = 1, . . . , N , where ã ∈ (0, 1) and b̃ ∈ (1,∞). Note that

E(Ṽt) = σ̃2. The MSM model therefore includes four parameters, {σ̃2, ã, b̃, c̃}.

It is easily seen that {C̃(i)
t }, i = 1, . . . , N , are independent two-state Markov chains defined on

a common state space comprised of the values {c̃, 2 − c̃}. Consequently, Ṽt can only take N + 1

distinct values in the set {σ̃2 c̃i(2 − c̃)N−i}Ni=0. This represents a first important difference with

respect to the FHMV model. Moreover, in contrast to our approach, the Markov chains, {C̃(i)
t },

i = 1, . . . , N , do not all share the same t.p.m., which implies that the structure of the MSM model

does not benefit from the results of Theorem 1 and Proposition 1. In fact, Proposition 2 shows

that the asymptotic rate of convergence of the MSM transition matrix is geometric and is driven

by the parameter ã, which also corresponds to the second largest eigenvalue of PMSM. Moreover,

the multiplicity of this eigenvalue is equal to one.

Proposition 2 (MSM stationary distribution and rate of convergence of PMSM).

(i) MSM stationary distribution : πMSM = 2−N12N .

(ii) Asymptotic limit of P k
MSM as k →∞: ΠMSM = limk→∞P

k
MSM = 12Nπ′MSM.

(iii) Asymptotic rate of convergence of P k
MSM as k →∞: P k

MSM −ΠMSM = O(ãk).

Another model that is related to the MSM model is the component-driven regime-switching

model of Fleming and Kirby (2013). Like the MSM model, it represents the latent variance by

way of two-state Markov chains with identical state spaces, but it allows some of these Markov

chains to share the same t.p.m. However, the models considered by Calvet and Fisher (2004) and

Fleming and Kirby (2013) are in practice restricted to switch between at most eleven different

values (N = 10), while the FHMV model has the advantage to generate a much richer support of

the volatility distribution comprising thousands of points.

2.5 Relationship to the stochastic volatility model

Because the FHMV process can be converted into a hidden Markov model with a large number of

states (see Section 2.2.3), the underlying variance process can be formulated as a first-order vector

autoregression (see for instance Hamilton, 1994, chapter 22). More precisely, if the random vector
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et ∈ RN ·2N
denotes a column vector with entry i equal to one if the Markov chain lies in state i

at time t and zero in all other entries, then we can express the FHMV model as

rt =
√
Vtεt, (16)

Vt = υ′et, (17)

et = P ′V et−1 + ut, (18)

where υ stands for the N · 2N column vector of elements of the state space of {Vt}, PV is the

transition matrix of {Vt}, and {ut} is a discrete martingale difference sequence. The model formu-

lation (16)–(18) shows explicitly that the FHMV process can be represented as an autoregressive

stochastic volatility model with discrete dynamics. While standard stochastic volatility models

assume that volatility dynamics are driven by a Gaussian innovation, the FHMV process uses a

discrete transition kernel that can potentially allow for fatter tails than the normal distribution.

2.6 Leverage effect

An additional novelty of the FHMV model, that is not shared by the MSM process, is the inclusion

of a time-varying leverage effect. The empirical analyses presented in Section 4 show that this

component significantly enhances the in-sample fit and out-of-sample forecasting performance of

the model on S&P 500 and NASDAQ data.

With a leverage effect, the latent variance specification introduced in Equation (3) is extended

to include an additional component:

Vt = σ2CtMtLt, where Lt =
NL∏
i=1

L
(i)
t ,

and

L
(i)
t =


1, if rt−i ≥ 0,

1 + li
|rt−i|√
Lt−i

, if rt−i < 0,

for i = 1, . . . , NL, with l1 > 0 and li = θi−1
l l1 for i = 2, . . . , NL, and θl ∈ [0, 1]. The leverage

component Lt adds two parameters, {l1, θl}, and is specified as a predictable process, that is, its
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value at any given time index is fully determined by the observed returns up to the previous time

step. This entails that the specific value of NL has a negligible impact on the computational

burden and it can thus be chosen to be very large in applications.

Moreover, the process {Lt} may be interpreted similarly to {Ct} and {Mt}. For instance, if we

let the returns {rt} represent a type of news, then we may say that the component L
(i)
t is turned

ON if rt−i < 0 and turned OFF if rt−i ≥ 0. The impact of this component on volatility is then

influenced by the importance of the news, which is a function of the magnitude of the negative

return |rt−i| and of a multiplicative factor li structured in such a way as to give less importance

to more distant news.

3 Model estimation

Section 2.2.3 explained that the FHMV process can be recast into a hidden Markov model on

the state space XV with N · 2N elements. Although the number of states grows quickly with the

number of components N , the model can be estimated using the standard Hamilton filter, even

when N = 10. This filter computes the predictive and filtering distributions of the state process

as well as the conditional density of the observed process recursively for t = 1, . . . , T as follows:

Predictive distribution: p(Vt | Ft−1,Θ) =
∑

Vt−1∈XV

p(Vt | Vt−1,Ft−1,Θ)p(Vt−1 | Ft−1,Θ),

Observed density: p(xt | Ft−1,Θ) =
∑

Vt∈XV

p(xt | Vt,Ft−1,Θ)p(Vt | Ft−1,Θ),

Filtering distribution: p(Vt | Ft,Θ) = p(xt | Vt,Ft−1,Θ)p(Vt | Ft−1,Θ)
p(xt | Ft−1,Θ) ,

where Ft denotes the observed market information up to time t and Θ stands for the model

parameters. The log-likelihood function is then obtained as log p(x1, . . . , xT | Θ) = log p(x1 |

Θ) +∑T
t=2 log p(xt | Ft−1,Θ). To initiate the Hamilton filter, an assumption on the state distribu-

tion at time t = 0, p(V0 | Θ), must be made; in our code, it is set to the stationary distribution of

the Markov-chain. A MATLAB program to estimate the FHMV model is available in the supple-

mentary material and on the corresponding author’s website. In our applications, we estimated

the FHMV model with N = 10 and the time required to carry out maximum likelihood estimation
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was below 30 minutes for a sample size of 4150 observations (Table 1 in the SA gives computing

times required to evaluate the likelihood function as a function of N). We remark that since the

predictive distribution of the jump component is constant over time, it is not necessary to track

the jump states in the Hamilton filter. This implies that in practice the filter only needs to iterate

over 1,024 states instead of 10,240 states when N = 10. Therefore, the computational burden of

the FHMV model is comparable to that of the MSM process (when N = 10, the MSM process

corresponds to a hidden Markov model over 1,024 states).

In constructing the model, we assume that the number of components used as building blocks

of {Mt} and {Ct} is the same and equal to N . Although nothing prevents us from considering

different numbers of components in {Mt} and {Ct}, in our view it makes sense to specify N as

large as possible in both of them up to computational constraints, because the effect of additional

components on volatility, measured by the variables ci and mi, is structured to converge geomet-

rically to one. Therefore, when N is large, the model has the ability to adjust itself, through the

parameters c1, m1, θc and θm, and assign very little importance to superfluous components. Since

the number of parameters does not increase with the number of components, we could also have

pursued a strategy to find the optimal N . We decided not to consider such an approach because

in our view, it is more practical to have only one model specification to estimate. In this respect,

processes such as the MSM and GARCH(p,q) models may be considered at a disadvantage because

they require a model selection procedure.

4 Applications to daily returns and realized variances

We compare the FHMV process to popular models on daily percentage log-returns and realized

variances from the S&P 500, the NASDAQ and the USD/EUR exchange rate. Daily percentage

log-returns span the period extending from January 3, 2000 to June 30, 2016 (source: Federal

Reserve Economic Data (FRED) database). Realized kernel variances cover the same period,

except for the USD/EUR exchange rate, for which the data is available until March 3, 2009

(source: Oxford-Man Institute of Quantitative Finance).

On each data set, we estimate the FHMV model with and without leverage based on N = 10
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(10,240 states) and NL = 70. The innovation of the return process (εt) is assumed to follow a

standard normal distribution, whereas the innovation of the realized variance process is assumed

to follow a gamma distribution with mean 1 and shape parameter v > 0.

4.1 Comparison of fit

Table 2 presents estimation results for the percentage log-return data sets. The FHMV models

with and without leverage (respectively, FHMV-lev and FHMV) are compared to five competitors:

the MSM (Calvet and Fisher, 2004), the GARCH(1,1) (Bollerslev, 1986), the GJR-GARCH(1,1)

(GJR) (Glosten et al., 1993), the two-state Markov-switching GARCH(1,1) (MS-GARCH) (Haas

et al., 2004) and the two-state Markov-switching GJR-GARCH(1,1) (MS-GJR). GARCH-type

models include a Student-t innovation; this is indicated by adding “-t” to the model acronym.

Model definitions are provided in the SA.

Table 1 – Comparison of fit: Percentage log-returns.

Models without leverage Models with leverage
Models MSM GARCH-t MS-GARCH-t FHMV GJR-t MS-GJR-t FHMV-lev
Np 4 4 9 7 5 11 9

S&P 500 (T = 4150)
log-lik −5874.1 −5870.4 −5861.3 −5862.9 −5782.0 −5770.5 −5770.1
AIC −5878.1 −5874.4 −5870.3 −5869.9 −5787.0 −5781.5 −5779.1
BIC −5890.8 −5887.1 −5898.8 −5892.1 −5802.8 −5816.3 −5807.5

NASDAQ (T = 4149)
log-lik −7261.3 −7259.5 −7248.4 −7252.8 −7197.5 −7175.5 −7180.2
AIC −7265.3 −7263.5 −7257.4 −7259.8 −7202.5 −7186.5 −7189.2
BIC −7278.0 −7276.2 −7285.9 −7281.9 −7218.3 −7221.3 −7217.7

USD/EUR (T = 4147)
log-lik −3762.2 −3747.5 −3740.7 −3738.6 −3745.6 −3740.5 −3737.7
AIC −3766.2 −3751.5 −3749.7 −3745.6 −3750.6 −3751.5 −3746.7
BIC −3778.9 −3764.2 −3778.2 −3767.8 −3766.4 −3786.3 −3775.1

Np: Number of parameters; log-lik: Maximum of the log-likelihood; AIC: Akaike Information criterion; BIC:
Bayesian information criterion; The highest values appear in bold.

From Table 1, we observe that, in accordance with the financial econometrics literature, the

inclusion of a leverage effect strongly improves the fit to stock indices, but has little impact

on the exchange rate data set. Overall, the fit of the FHMV (respectively, FHMV-lev) model

is comparable to that of the MS-GARCH-t (respectively, MS-GJR-t). Based on the AIC, the
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FHMV-lev model is preferred for the S&P 500 data set, the MS-GJR-t for the NASDAQ, and

the FHMV for the USD/EUR. Based on the BIC, the FHMV-lev model preferred only for the

NASDAQ. Moreover, although the MSM process has been originally proposed for exchange rate

series, the FHMV model strongly outperforms it in terms of information criteria.

Table 2 presents estimation results for the realized variance data sets. The competing mod-

els are: the MEM (Engle, 2002), the two-state Markov-switching MEM (MS-MEM) (Gallo and

Otranto, 2015) and the HAR (Corsi, 2009). These models are implemented with and without lever-

age; models with a leverage effect are indicated by adding “-lev” to the model acronym. Leverage

in the MEM and MS-MEM models is introduced as in Gallo and Otranto (2015), whereas leverage

in the HAR is adapted from Corsi and Renò (2012). Analogously to the FHMV model, all of

the competing models include a gamma-distributed innovation with mean 1 and shape parameter

v > 0. Model definitions are provided in the SA. Overall, we observe that estimation results

strongly favor the FHMV-lev model for all data sets.

Table 2 – Comparison of fit: Realized variances.

Models without leverage Models with leverage
Models HAR MEM MS-MEM FHMV HAR-lev MEM-lev MS-MEM-lev FHMV-lev
Np 5 4 9 8 8 5 11 10

S&P 500 (T = 4120)
log-lik −1473.2 −1465.0 −1234.0 −1148.4 −1336.0 −1366.4 −1120.7 −956.9
AIC −1478.2 −1469.0 −1243.0 −1156.4 −1344.0 −1371.4 −1131.7 −966.9
BIC −1494.0 −1481.7 −1271.5 −1181.7 −1369.3 −1387.2 −1166.5 −998.5

NASDAQ (T = 4124)
log-lik −1642.5 −1669.0 −1464.6 −1427.2 −1551.1 −1596.7 −1389.8 −1225.5
AIC −1647.5 −1673.0 −1473.6 −1435.2 −1559.1 −1601.7 −1400.8 −1235.5
BIC −1663.3 −1685.6 −1502.1 −1460.5 −1584.4 −1617.5 −1435.6 −1267.2

USD/EUR (T = 2328)
log-lik 1174.3 1150.0 1266.7 1325.3 1180.4 1151.8 1269.5 1335.5
AIC 1169.3 1146.0 1257.7 1317.3 1172.4 1146.8 1258.5 1325.5
BIC 1155.0 1134.5 1231.8 1294.3 1149.3 1132.4 1226.8 1296.7

Np: Number of parameters; log-lik: Maximum of the log-likelihood; AIC: Akaike Information criterion; BIC: Bayesian
information criterion; The highest values appear in bold.
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4.2 Value-added of the jump and leverage components

Table 3 shows how the log-likelihood (evaluated at the MLE) and the BIC of the FHMV model

increase when the jump component and the leverage effect are added. Overall, these two compo-

nents improve the log-likelihood by a greater margin when the model is fitted to realized variances

than to returns. This observation therefore partly explains why the model shows a greater out-

performance for the realized variance data sets in the previous section.

As expected, the contribution of the leverage component is very strong for S&P 500 and

NASDAQ data, and insignificant for the USD/EUR exchange rate according to the BIC. Moreover,

we note that the contribution of the jump component is always significant when evaluated with

respect to the BIC. We believe that this component turns out to be more important for the realized

variance series because the conditional variance dynamics is more directly observed in that case,

and abrupt changes are therefore easier to detect. In contrast, squared log-returns are a relatively

noisy proxy of conditional variance and this fact renders the identification of sharp changes in

volatility more difficult.

4.3 Analysis of the fit to S&P 500 data

4.3.1 Estimated parameters

Table 4 reports the parameter estimates for the FHMV-lev model fitted to S&P 500 returns and

realized variances. For interpreting the values, remember that when a component C
(i)
t in the model

is turned ON, it has a multiplicative impact of ci on the variance Vt. The jump component on the

other hand has an overall multiplicative effect of mim0.

With respect to the model for returns, we observe that each component C
(i)
t persists for an

average of two years (i.e., 1/(1 − p) days) when turned ON, and that the strongest component

can double the variance value. Moreover, jumps that increase the variance are approximately as

frequent as those that decrease it (i.e., Pr(Mt > 1) = 0.53). When looking at the model for realized

variances, the impact of persistent news lasts on average for 100 days and jumps that increase the

variance are relatively less frequent (i.e., Pr(Mt > 1) = 0.13).

Figure 1 illustrates the leverage coefficients li for i = 1, . . . , 70. We observe that until around
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Table 3 – Contribution of the jump and leverage components in the FHMV model.

Percentage log-returns
S&P 500 NASDAQ USD/EUR

FHMV w/o jump −5890.6 −7279.2 −3762.5
Increase in log-likelihood with respect to FHMV w/o jump
FHMV 28.6 26.5 24.3
FHMV-lev w/o jump 92.8 76.9 0.2
FHMV-lev 120.6 96.9 25.3

Increase in BIC with respect to FHMV w/o jump
FHMV 20.3 18.2 16
FHMV-lev w/o jump 84.5 68.6 -8.1
FHMV-lev 103.9 80.2 8.6

Realized variances
S&P 500 NASDAQ USD/EUR

FHMV w/o jump −1209.8 −1459.8 1274.1

Increase in log-likelihood with respect to FHMV w/o jump
FHMV 61.4 32.7 51.2
FHMV-lev w/o jump 146.0 182.9 5.3
FHMV-lev 252.9 230.3 61.4

Increase in BIC with respect to FHMV w/o jump
FHMV 53.1 24.4 43.5
FHMV-lev w/o jump 137.7 174.6 -2.4
FHMV-lev 236.3 213.7 45.9

60 (respectively, 20), past negative returns are relevant to build the leverage component in the

model for returns (respectively, realized variances). We can interpret this long-lasting impact as

the time needed for the financial market to completely react to a negative return. .
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Figure 1 – S&P 500 : Leverage coefficients li for i = 1, . . . , 70 in the FHMV-lev model.
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Table 4 – S&P 500: Maximum likelihood estimates of the FHMV model with leverage.

Percentage log-returns
Constant component : σ2 = 0.22

Markov-chain component : θc = 0.51, c1 = 1.99, p = 0.9986
c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

1.99 1.50 1.26 1.13 1.07 1.03 1.02 1.01 1.00 1.00
Jump component : θm = 0.87,m1 = 23.55, q = 0.93

m1m0 m2m0 m3m0 m4m0 m5m0 m6m0 m7m0 m8m0 m9m0 m10m0
1.69 1.48 1.31 1.15 1.02 0.90 0.79 0.70 0.62 0.07

Leverage component : θl = 0.92, l1 = 1.00

Realized kernel variances
Constant component : σ2 = 0.51

Markov-chain component : θc = 0.81, c1 = 2.19, p = 0.9897
c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

2.19 1.97 1.78 1.64 1.52 1.42 1.34 1.28 1.22 1.18
Jump component : θm = 0.75,m1 = 3.45, q = 0.12

m1m0 m2m0 m3m0 m4m0 m5m0 m6m0 m7m0 m8m0 m9m0 m10m0
3.08 2.53 2.12 1.81 1.58 1.40 1.27 1.18 1.11 0.89

Leverage component : θl = 0.81, l1 = 0.40

4.3.2 Autocorrelation structure

Figure 2 plots the empirical autocorrelations of the squared percentage log-returns and of the

realized variances and the estimated theoretical ones implied by the FHMV-lev model. Note that

the autocorrelations of the FHMV-lev model are computed by simulation. We observe a long-

lasting volatility persistence that is reasonably well tracked by the model, especially for realized

variances.
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Figure 2 – S&P 500 : Theoretical autocorrelations implied by the FHMV-lev model (solid line)
against empirical autocorrelations (dashed line).
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4.3.3 Inference on Vt

The fact that the Markov chain and jump components in the FHMV model imply a discrete

process for the latent volatility may raise some concerns about the flexibility of volatility dynamics

in the model. Figure 3 illustrates the time series of the median of the distribution of the inferred

conditional volatilities (i.e., the median of p(
√
Vt | FT )) in the FHMV-lev models estimated on

S&P 500 percentage log-returns and realized variances. We observe that the volatility in the

FHMV-lev model resembles a continuous volatility model.
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Figure 3 – S&P 500: The left (right) panel shows the inferred FHMV-lev conditional volatility for
the percentage log-returns (realized variances).

Figure 4 provides the smoothed probabilities over time of each one of the first three C
(i)
t

components being turned ON (i.e., Pr(C(i)
t = ci | FT )). We observe that the component having

the strongest impact on volatility is likely to be active during the dot-com crisis as well as during

the subprime mortgage crisis. It mimics a long-run volatility effect and could be interpreted as a

bull and bear effect. We also see a similar pattern of the different probabilities, which could be

accounted for.

4.3.4 Analysis of the leverage effect

Figure 5 shows the values taken by the leverage effect component Lt over time. We observe that its

effect is very strong during the subprime mortgage crisis and to a lesser extent during the dot-com

crisis.
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Figure 4 – S&P 500 : Smoothed probabilities of the three most influential C
(i)
t components. The

component with the largest impact on volatility is displayed in black solid line. The dash-dotted
line denotes the second component and the dotted line which is also the lightest one, corresponds
to the third component.
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Figure 5 – S&P 500 : Leverage effect component (Lt) over time.

Since this component is specified in a non-traditional way, it can be questioned whether it

really corresponds to the so-called leverage effect captured by standard volatility models, such as

the GJR model. To investigate this issue, note first that, assuming standardized innovations, the

GJR conditional variance process can be decomposed as follows:

σ2
t = ω + (α + δ1{rt−1<0})r2

t−1 + βσ2
t−1,

= ω(
t−1∑
i=0

βi) + α(
t−1∑
i=0

βir2
t−1−i) + δ(

t−1∑
i=0

βi1{rt−1−i<0}r
2
t−1−i)︸ ︷︷ ︸

LGJR
t

+βtσ2
0. (19)

The decomposition (19) isolates the contribution of the leverage component of the GJR model
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to the variance dynamics; its effect at time t corresponds to LGJRt = δ(∑t−1
i=0 β

i1{rt−1−i<0}r
2
t−1−i).

Therefore, this component depends on several previous squared returns and the influence of the

ith lagged squared return is scaled by the coefficient lGJRi = δβi−1, which geometrically decays over

time. Although there is a clear connection between Lt and LGJRt , as well as between li and lGJRi ,

the impacts of these components on volatility cannot be directly compared. This is due to the

fact that the leverage component of the FHMV model is specified as a multiplicative component,

whereas the impact of the GJR leverage component on volatility is additive. Nevertheless, the

correlation coefficient between Lt and LGJRt is in fact equal to 0.92, which confirms that both

components capture a similar effect.

4.4 Forecasting performance

We carry out a forecasting exercise over the last three years (756 financial days) of the data

sample periods in order to compare the predictions of the FHMV models and of some competitors

on short- and long-run forecasting periods. Each time we move forward by one day in the in-sample

period, the models are re-estimated, and cumulative variance forecasts,
∑h
i=1 V̂t+i, are computed

for time horizons of h = 1, 5, 10, 25, 50, 75 and 100. These forecasts are then compared to their

associated observed values
∑h
i=1 xt+i, where xt denotes either the realized kernel variance or the

squared percentage log-return. The comparison of forecasts is based on the (normalized) root

mean squared forecast error (RMSFE) defined as

RMSFE for horizon h =

√√√√√ 1
752− h+ 1

752−h∑
t=0

(
1
h

h∑
i=1

V̂t+i −
1
h

h∑
i=1

xt+i

)2

, (20)

where t = 0 represents the end of the in-sample period.

The FHMV-lev model needs return predictions to produce long-run realized variance forecasts.

We assume that the percentage log-returns rt ∼ i.i.d. N(µ̂, σ̂2) where µ̂ denotes the empirical mean

and σ̂2 the empirical variance over the last three years of our data sample period. The benefit

of the leverage effect could be further improved by considering a bivariate model for returns and

realized variances, an extension we leave to further research.

Table 5, for log-returns data, and Table 6, for realized variances, show the forecasting perfor-

mance of all models for the three financial time series.
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Table 5 – RMSFE computed over the last three years of the data sample period.

Horizon (h) 1 5 10 25 50 75 100

Percentage log-returns
S&P 500

Without
leverage


GARCH-t 1.38 0.89 0.77 0.68 0.65 0.62 0.57
MSM 1.38 0.89 0.77 0.68 0.64 0.61 0.56
MS-GARCH-t 1.38 0.88 0.77 0.68 0.64 0.60 0.55
FHMV 1.39 0.90 0.79 0.72 0.70 0.69 0.64

With
leverage

{
GJR-t 1.33 0.85 0.77 0.71 0.67 0.63 0.56
MS-GJR-t 1.35 0.84 0.73 0.59* 0.50** 0.45 0.40**
FHMV-lev 1.33 0.81 0.69 0.56* 0.48** 0.42** 0.37**

NASDAQ

Without
leverage


GARCH-t 2.05 1.23 1.08 0.95 0.91 0.87 0.76
MSM 2.04 1.23 1.08 0.94 0.91 0.90 0.85
MS-GARCH-t 2.06 1.28 1.16 1.12 1.20 1.26 1.25
FHMV 2.06 1.26 1.11 1.01 1.00 1.00 0.91

With
leverage

{
GJR-t 1.99 1.19 1.06 1.01 1.02 1.01 0.92
MS-GJR-t 1.96 1.13 0.99* 0.87 0.77* 0.70** 0.64*
FHMV-lev 2.00 1.14 0.96 0.77** 0.65** 0.56** 0.47**

USD/EUR

Without
leverage


GARCH-t 0.66 0.30 0.22 0.16 0.14 0.14 0.16
MSM 0.66 0.30 0.22 0.16 0.14 0.14 0.15
MS-GARCH-t 0.66** 0.30** 0.21** 0.15** 0.12** 0.12** 0.13**
FHMV 0.66** 0.30** 0.21** 0.15* 0.13** 0.13 0.14

With
leverage

{
GJR-t 0.66 0.30 0.21 0.15 0.13 0.14 0.15
MS-GJR-t 0.66** 0.29* 0.21* 0.14** 0.11** 0.11** 0.12**
FHMV-lev 0.66 0.30 0.21 0.15 0.13 0.14 0.15

A star means that the squared forecasting error is significantly smaller than that of the benchmark
process (GARCH-t for models without leverage, GJR-t for models with leverage effect) at the 10%
level when using the DM test. A double star stands for 5% significance level. The smallest RMSFE
appear in bold.

In Table 5, the performance of each model without leverage is compared according to the

DM test of Diebold and Mariano (2002) with respect to the GARCH-t model, while the models

including a leverage effect are compared to the GJR-t model. For the S&P 500 and NASDAQ, the

FHMV-lev model produces smaller RMSFE than all the other models (with two exceptions for

the NASDAQ, at forecast horizons 1 and 5 where GJR-t and MS-GJR-t are slightly better). The

differences between the RMSFE of FHMV-lev and the other models increase noticeably with the

forecast horizon. Its forecasting performance is found to be superior with respect to the GJR-t at

a 5% or 10% level at horizons higher than 10 days for the NASDAQ and for the S&P 500. This

is also the case, though less spectacularly, for the MS-GJR-t model.

For the USD/EUR log-returns, the FHMV model, at horizons smaller than 75 days, and the

MS-GARCH-t models, at all horizons, significantly outperforms the GARCH-t at the 5 or 10%

level.
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Table 6 – RMSFE computed over the last three years of the data sample period.

Horizon (h) 1 5 10 25 50 75 100

Realized kernel variances
S&P 500

Without
leverage


HAR 0.82 0.61 0.56 0.53 0.55 0.56 0.55
MEM 0.82 0.64 0.62 0.61 0.63 0.66 0.67
MS-MEM 0.82 0.64 0.62 0.62 0.66 0.70 0.72
FHMV 0.78 0.56 0.52 0.50 0.53 0.57 0.59

With
leverage


HAR-lev 0.78 0.55 0.49 0.44 0.41 0.38 0.35
MEM-lev 0.83 0.66 0.63 0.59 0.57 0.54 0.52
MS-AMEM-lev 0.83 0.66 0.64 0.60 0.58 0.57 0.55
FHMV-lev 0.75 0.52 0.46 0.39 0.33* 0.28** 0.24

NASDAQ

Without
leverage


HAR 0.61 0.49 0.47 0.46 0.51 0.54 0.54
MEM 0.61 0.53 0.53 0.56 0.64 0.72 0.78
MS-MEM 0.62 0.53 0.54 0.56 0.65 0.73 0.79
FHMV 0.58 0.46 0.45 0.51 0.64 0.75 0.83

With
leverage


HAR-lev 0.58 0.45 0.42 0.39 0.38 0.35 0.32
MEM-lev 0.58 0.48 0.48 0.48 0.53 0.57 0.60
MS-AMEM-lev 0.59 0.49 0.49 0.51 0.57 0.63 0.67
FHMV-lev 0.56 0.42 0.39 0.34* 0.31** 0.27 0.23**

USD/EUR

Without
leverage


HAR 0.29 0.27 0.24 0.25 0.30 0.34 0.36
MEM 0.30 0.27 0.25 0.27 0.30 0.34 0.37
MS-MEM 0.30 0.27 0.25 0.27 0.32 0.36 0.38
FHMV 0.31 0.27 0.25 0.28 0.33 0.37 0.39

With
leverage


HAR-lev 0.29 0.27 0.24 0.25 0.30 0.34 0.37
MEM-lev 0.31 0.28 0.25 0.27 0.30 0.34 0.37
MS-AMEM-lev 0.31 0.28 0.25 0.27 0.32 0.36 0.38
FHMV-lev 0.33 0.29 0.29 0.33 0.38 0.40 0.40

A star means that the squared forecasting error is significantly smaller than that of the
benchmark process (HAR for models without leverage effect and HAR-lev for models
with leverage effect) at the 10% level when using the DM test. A double star stands for
5% significance level. The smallest RMSFE appear in bold.

For realized variances (Table 6), the benchmark models are the HAR for models without

leverage effect and HAR-lev for those including a leverage effect. Considering the S&P 500 and

the NASDAQ, the FHMV-lev model produces smaller RMSFE than all the other models. The

differences increase strongly with the forecast horizon and become significant at 5 or 10% according

to the DM test for horizons 25, 50 and 100 for the NASDAQ and for horizons 50 and 75 for the

S&P 500. For the USD/EUR, the HAR model (for horizons 50 to 100) and HAR-lev (for the

smaller horizons) produce the smallest RMSFE, but no significant differences appear with respect

to the other models.
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5 Conclusion

We propose the factorial hidden Markov volatility (FHMV) model, a new volatility process that is

suited for financial returns and realized variances. We specify the variance as a high dimensional

Markov-chain that is decomposed into a product of three hidden components that can be econom-

ically interpreted. In particular, the jump process captures the reaction of the financial market

to non-persistent news whereas the Markov chain component reflects news with a long-lasting

impact. The last component controls for the leverage effect. The specification of the latter process

differs from what is typically found in the literature. These three processes are parsimoniously

and coherently specified and create a continuum of volatility states altogether. We derive the mo-

ments of the process and show that the autocovariance function can exhibit a slower decay than

in traditional hidden Markov model thanks to the multiplicity of the second largest eigenvalue of

the transition probability matrix. This property seems beneficial empirically as we show that the

FHMV model dominates the MSM process on the studied exchange rate and competes favorably

well with the GARCH-t, the GJR-t, the MS-GARCH-t and the MS-GJR-t processes in terms of

in-sample criteria such as the AIC and BIC on three financial data sets. Moreover, the FHMV

process also outperforms standard realized variances models (i.e., HAR, HAR-lev, MEM, MS-

MEM, MEM-lev and MS-MEM-lev) according to these criteria on three realized kernel variance

series. Regarding the predictive performance, the FHMV process competes very well with several

alternatives in short forecasting horizons (less than 25 days). In middle to long-run horizons, it

significantly improves over the other models especially when the leverage component is active.

We view this volatility modeling attempt with a high dimensional hidden Markov chain as

very promising since many extensions can be entertained. We could for instance add a fourth

component to take into account the trading volume or we could introduce correlated components

since the diverse news seem to be related. Additionally, a multivariate extension in the spirit of

Calvet et al. (2006) could be undertaken.
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