
2017-10

The Estimation of Network Formation 
Games with Positive Spillovers

Vincent Boucher

Septembre / September 2017

Centre de recherche sur les risques
les enjeux économiques et les politiques publiques

www.crrep.ca



Abstract

Boucher: Department of Economics, Universitée Laval, CRREP and CREATE, 
vincent.boucher@ecn.ulaval.ca

I present a behavioural model of network formation with positive network externalities in which 
individuals have preferences for being part of a clique. The behavioural model leads to an asso-
ciated supermodular (Topkis, 1979) normalform game. I show that the behavioural model 
converges to the greatest Nash equilibrium of the associated normal-form game. I propose an 
approximate Bayesian computation (ABC) framework, using original summary statistics, to make 
inferences about individuals' preferences, and provide an illustration using data on high school 
friendships.
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1. Introduction

Friendships are often characterized by tightly connected groups. These are

formally referred to as cliques, i.e. groups of individuals, each of whom is linked

to all the others.1 Indeed, some of the strongest friendships revolve not around

two people but around groups of friends. An interesting feature of cliques is

that it requires coordination among the individuals involved. Every member

of a clique must want to be friends with every other member of the clique;

otherwise, a clique will fall apart.2

In this paper, I present a model of network formation with positive network

externalities in which individuals have preferences for being part of a clique. In

particular, I present a behavioural model in which individuals have the oppor-

tunity to jointly revise their strategies. I characterize the equilibrium network

and, although the structure of the equilibrium cannot be expressed analyti-

cally, I show that it can easily be simulated. Building on this key property, I

propose an approximate Bayesian computation (ABC) framework to make in-

ferences about individuals’ preferences. I present an empirical illustration using

friendship networks.

I present a behavioural model in which, at any point in time, a leader, whose

identity may depend on the network structure, tries to implement a change in

the network structure. The evolution the the network structure is shaped by the

leader’s strategy to implement his desired change. I show that the behavioural

model converges to the greatest NE of an associated normal-form game.

Specifically, I show that the associated game is supermodular (Topkis, 1979)

and focus on the greatest Nash equilibrium of that game.3 If it is known that the

greatest equilibrium of the game is coalition-proof (Milgrom & Roberts, 1994)

and coalition-proof stochastically stable (Newton, 2012), I show that, in this

1For example, see Jackson (2008), chapter 2.2.3.
2See section 2 of this paper for details.
3Miyauchi (2016) uses a different approach and considers the set of all Nash equlibria. Hell-

mann (2013) also consider models with strategic complementarities, but focuses on pairwise
stability. Harrison & Muñoz (2008) also study different equilibrium selection mechanisms for
supermodular network formation games. Finally, Xu & Lee (2015) also focus on the greatest
NE in a different context.
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particular context, the greatest NE is also a strong Nash equilibrium (Aumann,

1959).

I develop a random utility model (McFadden, 1980) based on the microeco-

nomic model of network formation. I propose an ABC framework that allows

for the simulation of the posterior distribution of the unknown preference pa-

rameters. If the method is well suited to the study of the behavioural model

presented, it is general enough to allow for the estimation of any network for-

mation model for which the equilibrium network can be simulated rapidly (e.g.

Miyauchi (2016) or Boucher (2017)).

I propose an original method to select the set of summary statistics. In the

spirit of indirect inference (Gourieroux et al., 1993), I use the moments of an

auxiliary model. The statistics are similar in spirit to the ones suggested by

Fearnhead & Prangle (2012), although my approach is simpler to implement

for network formation models. I also discuss the interpretation of insufficient

summary statistics and show that they lead to identification issues, similar to

those arising from General Method of Moments estimators (Gallant & Tauchen,

1996).

I argue that the Bayesian setting is well suited to models of network forma-

tion as they do not rely on identification and asymptotic conditions, which can

rarely be expressed explicitly as a function of the model’s primitive conditions.

See the discussion in subsection 1.1.

I apply my method to the formation of friendships among high school stu-

dents. The simulated nature of the estimation strategy allows for more flexibility

than most existing models. In particular, it allows for non-symmetric prefer-

ence shocks. Since friendships are relatively scarce (individuals have few friends

relative to the size of the population), I estimate a model with non-symmetric

errors, in the spirit of conditional log-log models.

The remainder of the paper is organized as follows. In the rest of this section,

I review the recent literature. In section 2, I present the behavioural model, the

associated normal-form game, as well as their properties. In section 3, I present

the algorithm that allows the equilibrium network to be simulated. In section
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4, I present the ABC methodology. In section 5, I present an illustration using

the formation of friendship networks. I conclude in section 6.

1.1. Context

This paper contributes to the empirical literature on strategic network for-

mation.4 Making inferences from network data is challenging due to two main

issues: computational complexity and unknown asymptotic behaviour.

Computational complexity stems from the fact that the number of potential

networks over a population of size n is 2n(n−1). Then, even for small populations,

the number of possible network structures is intractable (e.g. 290 for n = 10),

leading to a curse of dimensionality. Non-standard asymptotic properties result

from the strong dependence between links, e.g. the friend of my friend is more

likely to be my friend than a random individual. In this section, I review some

key contributions to the literature in light of those two challenges.

The first strand of the literature presents models based on asymptotic theory.

Boucher & Mourifié (2012,2016) followed by Leung (2014) argue that homophily,

the empirical fact that individuals with similar characteristics are more likely

to be linked, implies a generalization of the α/φ-mixing properties found in the

spatial econometrics literature.5 Asymptotic independence is achieved as the

distance (in terms of observed characteristics) between individuals goes to in-

finity. In Boucher & Mourifié (2012,2016), the computational challenge is solved

by using an estimator based on the conditional distributions. In Leung (2014),

it is done through the definition of feasible bounds, covering the identified set.

Sheng (2012, 2014) also use tractable bounds to circumvent the computational

complexity of the model.

Chandrasekhar & Jackson (2014, 2015) study the asymptotic property of ex-

ponential random graph models (ERGMs), they solve the computational chal-

lenge, by focussing on networks formed of a finite collection of subgraphs and

4See Chandrasekhar (2015) and De Paula (2015) for recent reviews.
5See Chandrasekhar (2015) for an intuitive presentation of the argument. Some papers also

focus solely on homophilic preferences, such as Currarini et al. (2009) and Boucher (2015).
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by exploiting the fact that networks with identical features have the same prob-

ability of being observed. If the network is relatively sparse, a simple estimator

can be obtain by iteratively counting the subgraphs.

Leung (2015b) defines a two-step estimation procedure and limits the de-

pendence between links by focusing on a game of incomplete information and

by assuming an anonymity condition, while Leung (2015a) uses an underlying

network of potential links in order to limit the dependence between links.

Finally, Graham (2016a) and Graham (2016b) present models with unob-

served individual characteristics. In Graham (2016a) the focus is on a static

model of network network formation, whereas in Graham (2016b), he presents

a small-T panel model, where the probability that link is formed can be a func-

tion of the network structure at the previous period.

The second strand of the literature focuses on Bayesian inference, or ab-

stracts from the asymptotic properties of the models presented (e.g. Badev

(2013), Mele (2016)).6 Both models are based on an ERGM, leading to a like-

lihood which has a closed-form expression, but for which the denominator is

intractable.7 The likelihood can therefore be simulated using Markov chain

Monte Carlo (MCMC) simulations.8 A particular concern, however, is that the

Markov chain only converges to the likelihood as time goes to infinity, so the

estimation requires an extremely large number of simulations in order to con-

vincingly approximate the likelihood. To circumvent this problem, Mele (2016)

proposes an approximate exchange algorithm that only requires a finite number

of draws in order to simulate the likelihood. Finally, Mele & Zhu (2016) cir-

cumvent the computational challenge by proposing a variational approximation

method to approximate the intractable likelihood and show that their approxi-

mation is asymptotically exact.

6That being said, Mele (2016) presents a “large network” analysis and describes the proper-
ties of his inference strategy as the size of the network goes to infinity. Badev (2013) presents a
maximum likelihood estimator (MLE) where the intractable likelihood is approximated using
Markov chain Monte Carlo simulations.

7Formally, an ERGM is such that P (G) =
exp{Q(G)}∑
H exp{Q(H)} for some function Q.

8e.g. Metropolis-Hasting algorithms, see Mele (2016) for details.
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In this paper, I also focus on Bayesian inference and present a micro-founded

model for which the likelihood function has no closed-form expression, but can

easily be simulated. Since the algorithm converges in finite time, the simulation

process draws from the true density of the model with probability 1. The general

ABC approach presented allows for much more flexibility to specify individual

preferences and unobservable random shocks.

2. Model

The model consists of a population composed of n ≥ 3 individuals. Indi-

viduals interact in a directed network, represented by a n× n binary matrix G

where gij = 1 means that i is linked to j, and gij = 0 otherwise. Let gi repre-

sent the ith row in G, and G−i be the matrix where the i’th row is removed, so

(gi, G−i) = G. Similarly, I also use the notation G−ij , such that G = (gij , G−ij).

Individuals have preferences over the whole network structureG. Preferences

are represented by a utility function Ui(gi, G−i). I assume that there exists at

least one i ∈ N such that Ui(gi, G−i) 6= Ui(hi, G−i) whenever gi 6= hi.
9

For example, preferences could be separable across links, as in Ui(G) =∑
j 6=i gijVij(G−i), where Vij represents the value for i of a link with j, given G−i.

Such separable models can be found in Badev (2013), Leung (2015b) and Mele

(2016), among others. Separable models imply that the linking decisions can

be decomposed into link-specific decisions, which restricts the scope of analysis

(see below, as well as Bramoullé & Fortin (2010) for a discussion).

I am interested in non-separable models, where the best-response functions

cannot always be decomposed into link-specific decisions. In particular, I am

interested in capturing the strategic incentives inherent to the value of cliques.

Figure 1 presents an example of the creation of a clique. In Figure 1, j and k are

linked with each other, and also have links with i. If i creates links with j and

k, there will be a clique between i, j and k. This clique is assumed to generate

9This assumption plays the same role as a tie-breaking rule, ensures uniqueness and sim-
plifies the analysis by removing uninteresting cases. In section 5, I present a random utility
model for which this condition generically holds.
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an additional benefit for i (as well as for j and k). An important consideration

is that it is possible for i to prefer to create a link with j and k, even if he

may not want to create either link independently. This motivates the study of

non-separable models.

Figure 1: Benefit From Cliques

Since I’m interested in the prevalence of cliques, a natural assumption is

therefore to consider positive network externalities.10 I assume the following:

Assumption 1 (Main Assumption). For all ij, Ui(1, G−ij)−Ui(0, G−ij) is
non-decreasing in G−ij.

This assumption implies that incentive to create links increase as links are added

to the network. Assumption 1 allows to represent situations where linking de-

cisions are costly, while indirect links have positive value (e.g. Bala & Goyal

(2000), Galeotti et al. (2006), Fabrikant et al. (2003) and Miyauchi (2016), as

well as the connection model from Jackson & Wolinsky (1996)). However, the

assumption abstracts away from negative externalities (e.g. the coauthor model

from Jackson & Wolinsky (1996)). See also the discussion in Miyauchi (2016).

I argue that Assumption 1 is likely to hold in situations where a high degree

of clustering (e.g. cliques) is observed. I discuss the intuition in Example 1.

Example 1. Assume that the preferences are such that:

Ui(gi, G−i) =
∑
j 6=i

gijVij(G−ij).

10Even if homophily - the empirical fact that similar individuals have a higher probability
of creating a link - can create a certain amount of clustering, the (observed) homophily may
not be enough to replicate empirical facts. See for instance Graham (2016b) for a recent
discussion.
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This model is intuitive as the function Vij can be interpreted as the value for i
of a link with j (conditional of the set of other links). Note that this model is
in general not separable since Vij(G−ij) is a function of gi. Here, we have:

Ui(1, G−ij)− Ui(0, G−ij) = Vij(G−ij) +∑
k 6=i,j

gik[Vik(gij = 1, G−ik−ij)− Vik(gij = 0, G−ik−ij)]

Here, assumption 1 implies that Vij does not decrease when links are created,
and that the benefit of adding links does not decrease as links are added. �

The above discussion also shows that individuals may have an incentive to

coordinate their actions in the presence of positive network externalities. In the

next section, I present a behavioural model of dynamic network formation in

which individuals are allowed to coordinate.

2.1. A Behavioral Model

In this section, I present a behavioural model where the network structure

evolves through time, and where the individuals are allowed to coordinate their

strategies. Since network formation games are complex in nature, such a be-

havioural model might be judged more realistic than assuming that individuals

are fully rational (Wallace & Young, 2014). Here, the coordination of joint

deviations is helped by a leader, whose role is to propose modifications to the

network structure. As it will be clear, I impose no assumption on the identity

of such leader. His identify can be predetermined, random or deterministic, and

potentially be defined as a function of the network structure.

I also follow the extensive literature on network formation and focus on the

pair-based approach.11

The network evolves through time as follows. Let t = 1, ...,∞, and start

from any network G0. Every period t is characterized by the following phases:

1. (Agenda) A leader wants to change the status of a subset of links in the

network Gt. His agenda (i.e. the proposed modification) is choosen as

follows:

11A prime example is pairwise stability (Jackson & Wolinsky, 1996). See Vannetelbosch &
Mauleon (2015) for a recent review of equilibrium concepts in network formation games.

7



(a) The leader randomly selects a group of pairs J ⊆ {ij}j 6=i to be up-

dated.12

(b) The leader randomly selects his agenda ĜJ = {gij}ij∈J .13

2. (Campaigning) The leader campaigns to implement ĜJ .

(a) He simultaneously, but privately, ask all ij ∈ J such that gt−1ij 6=

ĝij = 0 whether they would be willing to remove their link, but

without sharing his agenda with them. A pair ij therefore accepts iff

Ui(0, G
t−1
−ij ) ≥ Ui(1, G

t−1
−ij ).

If at least one pair refuses, the campaigning fails.

(b) He jointly asks all pairs ij ∈ J such that gt−1ij 6= ĝij = 1 whether

they would be willing to create a new link, sharing his agenda with

them. A pair ij therefore accepts iff

Ui(1, ĜJ−ij , G
t−1
−J ) ≥ Ui(0, ĜJ−ij , Gt−1−J ).

If at least one pair refuses, the campaigning fails.

3. (Outcome) If the campaigning succeeds (i.e. if does not fail), the agenda

is implemented: Gt = (ĜJ , G
t−1
−J ). Otherwise, the network stays un-

changed: Gt = Gt−1.

Here, the leader’s campaigning strategy is crucial for the evolution dynam-

ics as it helps to discipline number of possible deviations. However, note that

the model is explicitly agnostic about the identity of the leader(s). This be-

havioural dynamics is therefore likely to represent reasonably well situations

where changes in the network structure is affected by a leader, echoing the large

literature on key-players in social networks (e.g. Zenou (2015)).

The leader’s campaigning strategy can be rationalized as follows. Since the

removal of a link does not require coordination, the first step of the campaigning

12The only assumption on the distribution λ(·|Gt−1) is that λ(J |Gt−1) > 0 for all J 6= ∅.
13The only assumption on the distribution λ̂(·|J,Gt−1) is that λ̂(ĜJ |J,Gt−1) > 0 for all

ĜJ .
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simply allows unprofitable links to be removed.14 At this point, the leader’s role

is somewhat artificial and, indeed, could be replaced by simply allowing a subset

of pairs in J to sever their links.

The crucial role played by the leader, however, is to coordinate strategies for

the creation of links. Since the addition of links is more profitable as links are

added (under Assumption 1), in the second stage of the campaigning (i.e. step

2(b)), the leader discloses his agenda as a mean to stimulate cooperation.

This random network dynamic extends Mele (2016) link-based meeting pro-

cess by allowing joint deviations.15 In the next section, I study the properties

of this dynamic process and show that it converges to a well-defined network

structure as t→∞.

2.2. The Game

In this section, I introduce a game which allows to study the properties of

the behavioural model presented in section 2.1. If the game is interesting in

itself, it can also simply be viewed as a technical tool that allows to derive the

properties of the behavioural model. The game is defined as follows:

Definition 1. The game of interest is ΓP = 〈gij , Uij〉ij:i 6=j, where preferences
are defined as: Uij(gij , G−ij) = gij [Ui([1, gi−j ], G−i)− Ui([0, gi−j ], G−i)].

The game ΓP is an induced game where each link acts as a player, partially

internalizing the externalities generated on the other links of the same individ-

ual.16 Crucially, the payoffs in ΓP are standardized so that U(0, G−ij) = 0 for

all ij.

Also, remark that, rewritten in terms of the game’s notation, Assumption

1 is equivalent to: Uij(gij , G−ij) being non-decreasing in G−ij . This formally

implies that ΓP is supermodular (Milgrom & Roberts, 1990; Topkis, 1979, 1998).

14This is similar to pairwise stability Jackson & Wolinsky (1996) where a network is pairwise
stable only if all links are pairwise rational.

15Note however that here, the meeting process does not include temporary shocks.
16As discussed in section 2.1, if the pair-based approach is widely adopted in the literature,

it comes with a cost. Specifically, for non-separable models, even a strong NE (Aumann, 1959)
of ΓP may not be individually rational. However, if Ui is separable across links, all NE of ΓP

are individually rational.
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Assumption 1 also implies that ΓP has positive spillovers (e.g. Milgrom &

Roberts (1990, 1994)), since indirect links have a positive impact on payoffs.

In any supermodular game, the set of Nash equilibria is non-empty, and there

exists a greatest and a least NE.17

Importantly, Assumption 1 implies that the greatest NE of ΓP has robust-

ness properties. Indeed, a standard argument for equilibrium refinements is

that equilibria should be robust so as to allow individuals to communicate and

coordinate while they choose their strategies. Aumann (1959) introduces the

concept of a strong Nash equilibrium, which requires that the strategy profile be

robust to deviations from any possible coalition. Bernheim et al. (1987) argues

that this refinement is too demanding (in terms of existence and strategic sophis-

tication) and proposes a weaker equilibrium refinement, called a coalition-proof

Nash equilibrium. Coalition-proof equilibria are defined inductively and require

that the strategy profiles be (Pareto) efficient, among the set of self-enforcing

agreements.

Milgrom & Roberts (1994) showed that the greatest NE of a supermodular

game with positive spillovers is coalition-proof and Newton (2012) showed that

the greatest NE can be reached by a simple evolutionary process: coalitional

stochastic stability. This particular evolutionary dynamic is such that 1) prof-

itable unilateral deviations are more likely than coalitional profitable deviations

and 2) coalitional profitable deviations from smaller coalitions are more likely.

I show below that under Assumption 1, the specific nature ΓP implies an

equivalence between coalition-proof NE and strong NE. Perhaps more impor-

tantly, I show that the behavioural model presented in section 2.1 converges to

the greatest NE of ΓP . Formally:

Proposition 1 (Main Result). Under Assumption 1, the greatest NE of ΓP

is the unique Strong NE of ΓP . Moreover, the behavioural model presented in
section 2.1 converges to the greatest NE of ΓP with probability 1 as t→∞.

Proposition 1 shows that the behavioural model presented in section 2.1

17Formally, there exists ḡ and g such that ḡ ≥ g∗ ≥ g for all NE g∗, including ḡ and g,

where ≥ holds element-wise (Topkis, 1979).
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is well defined and that the NE reached has robustness properties. However,

one drawback of the behavioural model is that it only reaches the greatest NE

asymptotically, which makes simulations impracticable. In the next section, I

present an alternative procedure to simulate the greatest NE of ΓP .

3. Simulating the Greatest NE

I now discuss the simulation of the greatest NE of ΓP . Topkis (1979) provides

an algorithm that allows for the computation of the greatest NE of a game.

The algorithm proceeds by best-response iterations, starting with the complete

network.18 In the context of ΓP , the equilibrium converges to the greatest NE

in at most T = m(m − 1) steps, where m = n(n − 1) is the total number of

pairs. I show that the following (slightly modified algorithm) is faster.

Algorithm 1 (Topkis (1979)). Define G0 as the complete network. For ev-
ery step t = 1, ..., T , and for all i, j such that gt−1ij = 1, generate

gtij = sup arg max
gij

Uij(gij , G
t−1
−ij )

until Gt = Gt−1.

The algorithm is modified from the typical Topkis’ algorithm since, at every

step, one needs only to check for linked pairs. This reduces the convergence

time, as shown in the following proposition.

Proposition 2. Algorithm 1 converges to the greatest NE of ΓP in at most
T = m(m+ 1)/2 steps.

Proposition 2 implies that the greatest NE can be simulated in a finite number

of steps. Also, since T = m(m + 1)/2 is an upper-bound, convergence to the

greatest NE may be much faster. This allows for the design of a simulation-based

inference procedure. In the next section, I describe an approximate Bayesian

computation (ABC) procedure that allows for the simulation of the posterior

distribution of a set of preference parameters.

18Similar algorithms also exist for the simulation of the least NE; Echenique (2007) provides
an algorithm that identifies all the NE.
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4. Simulating the Posterior Distribution

In the remainder of this paper, I enrich the model by assuming the following

random utility model (McFadden, 1980):

Ui(G) = Ui(G;X, E , θ) (1)

where X is a n×k matrix of observed characteristics, E is a vector of size m ≥ 1

of unobserved characteristics with known distribution υ, and θ is a vector of size

r ≥ 1, representing the parameter of interest.

At this point, it is worth noting that the procedure developed this section

does not depend on the model presented in section 2 and can be used for alter-

native models, whenever the equilibrium network can be easily simulated (e.g.

Miyauchi (2016) and Boucher (2017)).

That being said, I assume here that the data is generated by the greatest

NE. Therefore, the likelihood function is given by:

P (G|X; θ) =

∫
1{A(E , X; θ) = G}υ(dE) (2)

where A(E , X; θ) is the network produced by Algorithm 1, given E , X and

θ. Since this likelihood has no closed-form expression, it has to be simulated.

As discussed in the introduction, my approach contrasts with the literature

(e.g. Mele (2016)), where the likelihood can be written explicitly, but where

the computation of the denominator is infeasible. Here, since (2) has no explicit

form, it is not possible to adapt the approximate exchange algorithm of Mele

(2016) to simulate the model. Fortunately, from Proposition 2, Algorithm 1

allows us to easily draw samples from the P (G|X; θ) since the algorithm termi-

nates in finite time.

I use approximate Bayesian computation (ABC) to simulate the posterior

distribution of θ. ABC extends standard Bayesian inference for simulated like-

lihood models. Recall that standard Bayesian inference requires us to compute

p(θ|X,G), the posterior distribution of θ, given the data. From Bayes’ rule, we
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have:

p(θ|X,G) ∝ p(θ)P (G|X; θ)

where p(θ) is the prior distribution on θ and P (G|X; θ) is the likelihood function.

Since p(θ|X,G) usually cannot be written explicitly, most Bayesian analysis uses

MCMC algorithms in order to draw samples from the posterior distribution

p(θ|X,G). Specifically, the objective is to generate a random sequence {θt}t,

such that θt is drawn from the posterior distribution as t→∞.19

However, these MCMC methods rely on researchers’ abilities to evaluate

the likelihood P (G|X; θ). ABC circumvents this requirement by using data

augmentation. That is, MCMC methods for ABC generate a random sequence

{Ht, θt}t, where the Ht are pseudo-observations, i.e. networks simulated from

the model, given θt. In other words, the Ht represent the greatest NE of a game

where the individuals’ utilities are given by (1), for different draws of Et.

If the sequence {Ht, θt}t is such that (Ht, θt) is drawn from p(θ,H|X,G) as

t → ∞, the posterior distribution can be obtained by simply integrating over

H.20

The literature on ABC is large and rapidly expanding. Marin et al. (2012)

offer a review of the main concepts, as well as the most common MCMC algo-

rithms used for ABC (see also Beaumont (2010)). Most MCMC methods for

ABC (including the one I use here) are such that:

p(θ,H|X,G) ∝ p(θ)P (H|X; θ)1{ρ(S(H), S(G)) ≤ ν}

where ρ is a distance function, S is a set of network summary statistics and ν

is the tolerance level. The relevant posterior distribution is therefore:

p(θ|X,G) ∝ p(θ)
∑
H

P (H|X; θ)1{ρ(S(H), S(G)) ≤ ν} (3)

If the set of summary statistics is Bayes sufficient, (3) correctly approximates

19See for instance Greenberg (2012) for a good introduction to Bayesian inference.
20That is, p(θ|X,G) =

∑
H p(θ,H|X,G).
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the true posterior distribution as ν → 0.21 The parameter ν therefore controls

the precision of the approximation.22

A typical MCMC method for ABC goes therefore as follows:

Algorithm 2 (MCMC). Start with M parallel chains {H0
m, θ

0
m}m, where H0

m

is a pseudo-observation, simulated given θ0m. For every step of the algorithm
t = 1, ...,∞, do the following:

For m = 1, ...,M :

1. Generate θ∗m = θt−1m + jump({θt−1m })
2. Simulate (potentially many) pseudo-observations {H∗m} given θ∗m
3. Accept θ∗m with probability pacc

I use the Metropolis-Hasting acceptance probability:23

pacc = min

(
1,

p(θ∗m)

p(θt−1m )

)
· 1{ρ(S(H∗m), S(G)) ≤ ν}

The (random) jump function gives the updating process of θt. For exam-

ple, one could simply choose a random-walk updating where jump({θt−1m }) ∼

N(0,Σ). However, as the number of dimensions of θ grows, such an approach

is likely to lead to bad acceptance rates and slow convergence.

Among the many possibilities, I use the jump function proposed by Sadegh

& Vrugt (2014), formally described in the Appendix. This particular jump

function has the advantage of using the information from the other parallel

chains, while only updating a subset of dimensions of θ at each step.24

Finally, note that the algorithm is defined conditional on a given set of

summary statistics; I discuss the selection of summary statistics in the next

subsection.

21A set of summary statistics S(G) is Bayes sufficient if for any prior p(θ), p(θ|S(G)) =
p(θ|G), a.s. See section 4.1 for a detailed discussion.

22Note that ABC can also be seen as an exact inference procedure, in the presence of model
uncertainty (Wilkinson, 2013).

23See the Appendix for details about the acceptance probability during the burn-in phase.
24There are many variant of ABC-MCMC algorithms and the one I use here is by no mean

the only possibility. The recent interest in ABC can also be the existence of off-the-shelf
software packages. See for instance the “EasyABC” R package.
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4.1. Selecting the Summary Statistics

There is no consensus on how to determine optimal summary statistics in

practice. As discussed by Robert et al. (2011), finding sufficient statistics is often

impossible and most ABC is performed using insufficient statistics. Indeed,

useful sufficient statistics can only be found for distributions of the exponential

family.25 Since most distributions of interest are not of the exponential family,

most authors (e.g. Fearnhead & Prangle (2012) and Creel & Kristensen (2015))

focus on weaker conditions such as linear sufficiency.26

Fearnhead & Prangle (2012) show that best linearly sufficient summary

statistic, in the sense of minimizing the expected quadratic error loss, is given

by the true posterior mean. Since the mean of the posterior distribution is

not known in practice, the authors propose approximating it using an auxiliary

model.

Indeed, as noted by many authors (e.g. Forneron & Ng (2015)), the selection

of summary statistics is analogous to the challenge of determining the binding

function for (simulated) minimum distance estimators such as indirect inference

(Gourieroux et al., 1993). I will use a similar approach and define my summary

statistics using an auxiliary model.

Let G be the observed network, and H represent any network. Consider an

auxiliary empirical model, represented by the set of moments M(H;X,β).27 I

define my summary statistic as the moments of the auxiliary model:

S(H) = M(H;X, β̂)

for some β̂. For example, β̂ can be such thatM(G;X, β̂) = 0, i.e. the generalized

method of moments (GMM) estimator for the auxiliary model.

25This comes from the Pitman-Koopman-Darmois theorem, which states that, under some
regularity conditions, only distributions of the exponential family have sufficient statistics that
do not grow with the sample size. See Theorem 5.4 of Lehmann et al. (1991) for an exposition
and discussion.

26i.e. E[θ|S(G)] = E[θ|G] for any prior distribution.
27Note that identification requires that the dimension of the auxiliary parameter β be at

least as large as the number of dimensions of θ.
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This approach carries the same intuition as the indirect inference approach

suggested by Gallant & Tauchen (1996), as displayed in Figure 2. In Gourieroux

et al. (1993), one matches the coefficient estimated from the observed data (β̂ in

Figure 2) with the coefficient estimated from the simulated data (β(θ) in Figure

2). This is computationally intensive since it requires the estimated coefficient

to be calculated for every simulation. Instead, I propose to follows Gallant

& Tauchen (1996) and to match the value of the moments, evaluated at the

coefficient estimated from the observed data (M(G, β̂) in Figure 2).

Figure 2: Link to Indirect Inference

β

M(G,β)

Misspecified model
(data)

Misspecified model
(simulated given θ)

β̂ β̂(θ)

M(Gs,β̂)

In the context of network formation models, a natural auxiliary model is an

exponential random graph model (ERGM):

L(H;X, θ) = φ(H;X, θ)− ln[
∑
H′

exp{φ(H ′;X, θ)}]
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for some function φ.28 Before computing the associated summary statistics

(or moments, i.e. the derivative of L(H;X, θ) with respect to θ), note that

L(H;X, θ) 6= L(H ′;X, θ) iff φ(H;X, θ) 6= φ(H ′;X, θ), so the normalizing con-

stant brings no information. It is therefore sufficient to consider the following

summary statistics:29

S(H) =
∂φ(H;X, ·)

∂θ
(θ̂)

We must now choose a suitable function φ(H,X, θ). If φ(H;X, θ) is linear in

θ (i.e. φ(H;X, θ) = T (H,X) · θ, where T is a vector of the network’s statistics),

we have S(H) = T (H,X) and the summary statistics S are sufficient statistics

for L(H;X, θ), since in this case, the ERGM belongs to the exponential family.

Unfortunately, this does not imply that S(H) is sufficient for P (H|X; θ).

As discussed above, it is very hard to find conditions under which S(H)

is sufficient for P (H|X; θ), and the literature mostly uses insufficient statistics

in practice.30 Here, note that Proposition 1 implies that the greatest NE is

Pareto-efficient. Therefore, any function φ(H;X, θ), monotone with respect to

the Pareto order, is a potentially good candidate (e.g. the utilitarian welfare

function). I show in section 5, that this choice leads to fairly intuitive summary

statistics. I finish this section by discussing the interpretation of ABC based on

insufficient summary statistics.

4.2. An Interpretation of (Insufficient) Summary Statistics

As discussed in the previous section, the error of approximation due to the

use of insufficient summary statistics for ABC is still not very well understood.

Nonetheless, since the requirement of sufficiency is particularly strong, most

28This is the log-likelihood for an ERGM.
29Note that here, β has the same number of dimensions as θ. I will therefore slightly abuse

notation and let β = θ. In general, computing θ̂ is challenging. If it is intuitive to think of
θ̂ as being the maximum likelihood estimator of L(H;X, θ), it is not needed for the inference
procedure. Any carefully chosen value for θ could be used instead. Note also that if φ is linear
in θ, S(H) will be independent of θ̂.

30Park et al. (2015) suggest using a non-parametric kernel density function in order to
circumvent the problem of choosing a set of sufficient statistics. The approach is promising
for real-valued outcome variables, but it is impracticable for networks.
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ABC implementations focus on insufficient statistics, which raises questions

about their validity.

In this section, I argue that the even with the use of insufficient summary

statistics, ABC still has a meaningful interpretation. Specifically, I provide

an alternative interpretation of ABC, based on the notion of quasi-posterior

distribution, as introduced by Chernozhukov & Hong (2003).

As discussed in the previous section, the summary statistics in a Bayesian

setting play the same role as moments in a classical setting. Consider the

following function, which is the objective function for a standard (simulated)

method of moments:

L(θ) = −(E(S(H)|θ)− S(G))′Ω(E[S(H)|θ]− S(G))

where E(S(H)|θ) is the average value of the summary statistics for a large

number of simulations given θ, and where Ω is positive definite. Then, following

Chernozhukov & Hong (2003) this defines the quasi-posterior :

p̃(θ|X,G) ∝ exp{L(θ)}p(θ)

As discussed in Chernozhukov & Hong (2003), it is often easier to implement

MCMC algorithms to simulate p̃(θ|X,G) than to maximize L(θ). In this vision

somewhat operational, Bayesian statistics constitutes a convenient alternative to

classical estimation of non-convex problems, where identification is challenging,

or when the asymptotic properties are not well understood.

The same approach is true here. By construction, S(·) is Bayes sufficient

for the quasi-posterior p̃(θ|X,G). This implies that the ABC presented in the

previous sections converges to the quasi-posterior as ν → 0. Then, from an oper-

ational point of view, ABC procedure can be interpreted as a MCMC procedure

for resolution of a classical simulated GMM estimator.

This also allows to see that the difference between ABC and standard Bayesian

statistics is similar to the difference between Maximum Likelihood (ML) and
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GMM estimations. When the likelihood function has many local maxima, the

ML allows to discriminate between them using the value of the likelihood. When

using a GMM (based on the derivative of the likelihood) however, identification

is lost since all local maxima solve the GMM objective function. In this case,

identification can often be restored using a GMM based on higher moments (see

for instance the discussion in Gallant & Tauchen (1996)).

Therefore, when summary statistics are based on natural moments, the loss

of using insufficient statistics can be seen as a loss of identification, similar to

the one due to using GMM instead of ML. I present an illustration in the next

section.

5. High-School Friendship Networks

In this section, I provide an illustration of the model using friendship for-

mation among teenagers. I use the Add Health database, which contains data

on friendships as well as many socio-economic characteristics of high-school

teenagers. There are dummy variables indicating whether an individual is fe-

male, Hispanic, white, black or Asian, as well as whether their mother or father

are currently in the work force. There is also data on mothers’ and fathers’

years of high school and post-secondary education, and the student’s current

grade. Table 1 presents descriptive statistics.

I consider the following model:

Ui(G;X, E , θ) =
∑
j 6=i

gijVij(G−ij , X, E , θ)

where

Vij(G−ij , X; θ) = θ0 +

10∑
l=1

θl|xli − xlj |+ εij︸ ︷︷ ︸
Private

+ θ11gji︸ ︷︷ ︸
Reciprocity

+ θ12
∑
k 6=i,j

gik max(gjk, gkj)︸ ︷︷ ︸
Cliques

= V̂ij(G−ij , X; θ) + εij

(4)
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Table 1: Descriptive Statistics

Variable Mean Std. Dev. Min Max
Female 0.5205 0.4999 0 1
Hispanic 0.0627 0.2425 0 1
White 0.8581 0.3492 0 1
Black 0.1061 0.3082 0 1
Asian 0.0141 0.1178 0 1
Grade 8.9552 1.6858 7 12
Education (Mother) 5.6611 2.2787 1 12
Work (Mother) 0.7762 0.4170 0 1
Education (Father) 5.8657 2.5208 1 12
Work (Father) 0.9450 0.2281 0 1
Number of individuals: 782
Number of schools: 14

assuming that θ11, θ12 ≥ 0.

We can easily compute:

Proposition 3.

Uij(G;X, E , θ) = gijVij(G−ij , X, E , θ) + gijθ12
∑
k 6=i,j

gik max(gjk, gkj)

so assumption 1 holds whenever θ11, θ12 ≥ 0.

Here, θ0 represent the intrinsic value of friendship, while θ1, ..., θ10 are meant

to capture homophilic preferences. Homophily is a well-known feature of social

networks (e.g. Currarini et al. (2009)) and describes the empirical fact that

similar individuals have a higher probability of being linked. In particular,

if θ1, ..., θ10 are negative, it implies that linking with individuals with differ-

ent socio-economic characteristics lowers an individual’s payoff. The parameter

θ11 ≥ 0 represents the additional benefit of reciprocal links, and θ12 ≥ 0 repre-

sents the benefit of creating cliques.

I assume that the random shocks εij follow a Gumbel(0,1) distribution.31

This distribution is asymmetric and allows for a better representation of rare

events. As shown in Table 2, the number of links is much lower than the number

31This is also called a log-Weibull or generalized extreme value and referred to in the liter-
ature on discrete choice models as the complementary log-log model.
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of potential links (i.e. the number of pairs): only about 2.2% of potential

friendships are created. Therefore, the use of a distribution where large shocks

are less frequent than small ones is more appropriate.

I now discuss the choice of summary statistics. As discussed in the previous

section, a good candidate for the auxiliary model is an ERGM model where

φ(H;X, θ) is increasing with respect to the Pareto order. Here, a sensible choice

is the (expected) utilitarian welfare function:32

φ(H;X, θ) =
∑
ij

hij V̂ij(H−ij , X, θ)

This leads to the following associated summary statistics:

S(H) = M(H,X, β̂) =
∑
ij

hijZij(H−ij) (5)

where Zij(H−ij) = (X ′ij , 1, hji,
∑
k 6=i,j hik max{hjk, hkj})′ has the same di-

mension as θ. Note that since φ(H;X, θ) is linear in θ, the summary statistics

are independent of θ.

Also note that the intuition behind the construction of the summary statis-

tics is easily visible from (5). The ABC procedure tries to match r moments, one

for each dimension of the parameter space, as would be the case for a (simulated)

GMM. Table 2 gives the value of such moments in the data.

As a benchmark, I first present the results from a (inconsistent) complemen-

tary log-log model, i.e. where P (gij = 1) = 1 − exp(− exp(Uij)). Results are

displayed in Table 3. Results show evidence of homophilic preferences on all

exogenous characteristics.

I now estimate the true model by simulating from the posterior distribu-

tion using Algorithm 2. Results are displayed in Table 4, and details of the

implementation as well as diagnostics and convergence tests can be found in

32Note that the maximum of the utilitarian welfare function is not, in general, a NE. Also,
the resulting summary statistics are the same as one would obtain by using φ(H;X, θ) =∑

ij Uij(H−ij , X, θ).

21



Table 2: Network Summary Statistics

Summary Statistic (Moments) Value
Number of links × ∆ gender 463
Number of links × ∆ Hispanic 69
Number of links × ∆ white 65
Number of links × ∆ black 25
Number of links × ∆ Asian 26
Number of links × ∆ age 400
Number of links × ∆ mother educ. 2,535
Number of links × ∆ mother work 359
Number of links × ∆ father educ. 2,521
Number of links × ∆ father work 95
Number of links: 1,175
Number of reciprocal links 420
Number of cliques 1,040
Number of pairs 53,290

Table 3: Misspecified Complementary Log-Log Estimates

Variable Mean Std
Gender -0.3670∗∗ (0.0610)
Hispanic -0.2645∗∗ (0.1311)
White -0.0458 (0.1584)
Black -1.0359∗∗ (0.2420)
Asian -0.1279 (0.2000)
Grade -1.1062∗∗ (0.0496)
Education (Mother) 0.0067 (0.0169)
Work (Mother) -0.1086 (0.0646)
Education (Father) -0.0418∗∗ (0.0154)
Work (Father) -0.0562 (0.1112)
Reciprocal links 1.8318∗∗ (0.0699)
Cliques 0.5912∗∗ (0.0206)
Intercept -2.8996∗∗ (0.0740)
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the Appendix. In particular, Figures 3 and 4 of the Appendix show how well

the model does in terms of replicating the observed summary statistics, similar

to what is proposed in Lemaire et al. (2016). Observed summary statistics are

well matched. The posterior distribution for each parameter can also be found

in Figures 5 and 6 of the Appendix.

Note that the posterior distribution for the effect of reciprocal links and

cliques are small and highly concentrated. This is explained by the equilibrium

effects of positive network externalities, and by the explicit consideration of the

equilibrium selection mechanism. A small increase in the value of cliques or

reciprocal links leads to a large increase in the number of realized cliques at

equilibrium.

I conclude in the next section.

6. Going Further

The model developed in this paper is quite general and has a wide range

of potential applications. In particular, the simulated nature of the estimation

procedure allows for much more flexibility with respect to the unobservables. As

an illustration, in section 5, I use Gumbel-distributed random errors. However,

the model allows for much more general error structures.

As discussed in Pin & Rogers (2015), stochastic models of network formation

are particularly good at replicating observed network statistics, more so than

strategic models of network formation (as in this paper). However, stochastic

models often lack economic intuition. The ABC procedure developed in this

paper reconciles the stochastic and strategic approaches. Indeed, the strate-

gic model of network formation could be enriched by a stochastic model (e.g.

through the distribution of the unobservables). Since the set of summary statis-

tics used by the ABC procedure is not limited to the ones generated by the

strategic model, one can use additional network statistics (e.g. clustering coef-

ficient, average degree, diameter, etc.) in order to recover the parameters of the

stochastic network formation model.
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Table 4: Posterior Distribution

Statistic N Mean St. Dev. Min Median Max

Sex 1,950,000 −0.855 0.951 −19.175 −0.786 1.580
Hisp 1,950,000 −0.405 0.561 −11.264 −0.340 0.762
White 1,950,000 −0.444 0.771 −16.249 −0.334 1.166
Black 1,950,000 −1.432 0.980 −18.840 −1.385 1.102
Asian 1,950,000 −0.575 0.459 −5.283 −0.519 0.722
Grade 1,950,000 −2.167 1.368 −21.771 −1.966 −1.197
M Educ 1,950,000 −1.416 3.961 −38.694 −0.136 0.849
M Work 1,950,000 −0.480 0.727 −16.415 −0.418 1.399
F Educ 1,950,000 −3.457 5.516 −37.948 −0.556 0.514
F Work 1,950,000 −0.075 0.576 −5.076 −0.050 1.499
Intercept 1,950,000 −0.131 0.763 −3.594 0.007 1.510
Recip Links (logs) 1,950,000 −8.449 5.707 −39.991 −7.230 −0.082
Cliques (logs) 1,950,000 −10.138 5.612 −43.280 −8.942 −2.049



Simulation-based inference procedures are therefore very promising and could

go a long way toward explaining the formation of social and economic networks.
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8. Appendix - Proofs

Proof of Proposition 1

Claim 1: The greatest NE of ΓP is the unique strong NE.

Let G∗ be the greatest NE and suppose that there exists a coalition S with

profitable deviation ĜS . This implies that for all ij ∈ S,

Uij(ĜS , G
∗
−S) ≥ Uij(G∗) (6)

with strict inequality for at least one ij.

Let G+
s = max{ĜS , G∗S} and G−s = min{ĜS , G∗S}.

Since G∗ is a NE, we have Uij(g
−
ij , G

∗
S−ij , G

∗
−S) ≤ Uij(G

∗), which implies

(using (6)) that Uij(ĝij , ĜS−ij , G
∗
−S) ≥ Uij(g−ij , G∗S−ij , G∗−S), or:

Uij(ĝij , ĜS−ij , G
∗
−S)− Uij(g−ij , G

∗
S−ij , G

∗
−S) + Uij(g

∗
ij , G

∗
S−ij , G

∗
−S) ≥ Uij(G∗)

From assumption 1, this implies:

Uij(ĝij , ĜS−ij , G
∗
−S)− Uij(g−ij , G

+
S−ij , G

∗
−S) + Uij(g

∗
ij , G

+
S−ij , G

∗
−S) ≥ Uij(G∗)

And from assumption 1 again, it also implies that:

Uij(ĝij , G
+
S−ij , G

∗
−S)− Uij(g−ij , G

+
S−ij , G

∗
−S) + Uij(g

∗
ij , G

+
S−ij , G

∗
−S) ≥ Uij(G∗)

(7)

There are two cases: either g∗ij = 0, which implies that g−ij = 0, and g+ij =

ĝij = 1, or g∗ij = 1, which implies that g+ij = 1, and g−ij = ĝij = 0. In any case,

we have:

Uij(g
+
ij , G

+
S−ij , G

∗
−S) = Uij(ĝij , G

+
S−ij , G

∗
−S)+[Uij(g

∗
ij , G

+
S−ij , G

∗
−S)−Uij(g−ij , G

+
S−ij , G

∗
−S)]

(8)

Therefore, equations (7) and (8) imply that G+
S is also a profitable deviation

for S. Note that the deviation is strictly profitable since it must be strict for at

least one ij.
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Note that for all ij /∈ S, we have Uij(G
∗) ≤ Uij(G+

S , G
∗
−S) from assumption

1, so (G+
S , G

∗
−S) is a Pareto improvement from G∗. If (G+

S , G−S) is a NE, this

contradicts G∗ being the greatest NE.

Suppose that G∗∗ ≡ (G+
S , G

∗
−S) is not a NE. Then, there exists ij and gij

such that Uij(gij , G
∗∗
−ij) > Uij(G

∗∗).

Suppose first that g∗∗ij = 1. If ij /∈ S, it imlies that g∗ij = 1 and it is a

contradiction since links were added and assumption 1 holds. If ij ∈ S, then

Uij(1, G
∗∗
−ij) ≥ Uij(0, G

∗
−ij) = 0 (the coalition was a profitable deviation), but

Uij(1, G
∗∗
−ij) < Uij(0, G

∗∗
−ij) = 0. This is a contradiction of assumption 1.

This shows that g∗∗ij = 0 is the only possibility. Then, profitable deviations

go by link addition under assumption 1. The process is then repeated until no

profitable deviation exists. The final result is necessarily a NE, which contradicts

the fact that G∗ is the greatest NE.

The uniqueness comes from the fact that the NE are ranked according to

the Pareto order under Assumption 1 and that at least one ij would strictly

prefer the greatest NE. QED

Claim 2: The behavioural model converges to the greatest NE.

Note that the behavioural model can be written as follows:

1. A group of pairs J ⊆ {ij}j 6=i is selected according to λ(·|Gt−1) such that

λ(J |Gt−1) > 0 for all J 6= ∅.

2. An updating ĜJ = {gij}ij∈J is proposed according to λ̂(·|J,Gt−1) such

that λ̂(ĜJ |J,Gt−1) > 0 for all ĜJ .

3. ĜJ is accepted iff Uij(ĜJ , G
t−1
−J ) ≥ Uij(Gt−1) for all ij ∈ J .

This dynamics corresponds to the unperturbed dynamics in Sawa (2014).

One can see that the meeting process allows for any deviation, for any coalition,

with strictly positive probability. Then, any network that is not a strong NE

cannot be absorbing. Similarly, any strong NE is an absorbing state. Since the

greatest NE is the only strong NE, this shows that the greatest NE is the only

absorbing state.

32



To see that the greatest NE is always reachable from any network, consider

the following procedure. Start with G, which is not a NE. Consider the set of

links such that gij = 1 and Uij(0, G−ij) > Uij(1, G−ij). Remove one of those

links, and repeat until no link removal is profitable. At this point any profitable

deviation must go through link addition, until it reaches a NE. Once a NE is

reached, go to the greatest NE. Then, by construction, the greatest NE was

obtained by a series of profitable coalitional deviations. QED

Proof of Proposition 2

By construction, the procedure goes by link removal, therefore Gt ≥ Gt+1.

If, at some step t, Uij(0, G
t
−ij) > Uij(1, G

t
−ij), then Uij(0, G

t+1
−ij ) > Uij(1, G

t+1
−ij )

from increasing differences (or positive spillovers). Therefore, there is no need

to revisit links such that gtij = 0.

Convergence to the greatest NE follows from Topkis (1979). The convergence

time is bounded by the slowest possible convergence, i.e. if only one link is

removed at every stage and the greatest NE is the empty network.

Proof of Proposition 3

We have:

Ui(1, G−ij)− Ui(0, G−ij) = Vij(G−ij) + θ12
∑
k 6=i,j

gik max{gjk, gkj}

so

Uij = gijVij(G−ij) + θ12gij
∑
k 6=i,j

gik max{gjk, gkj}

or,

Uij = gij [θ0 +

10∑
l=1

θl|xli − xlj |+ εij + θ11gji + 2θ12
∑
k 6=i,j

gik max(gjk, gkj)]

We immediately see that assumption 1 holds for θ11, θ12 ≥ 0.

QED
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9. Appendix - MCMC Algorithm

9.1. Distance Function and Tolerence Level

I scale the value of the different moments so as to make them comparable

using the following distance:

ρ(S(G), S(H)) =
√

[S(G)− S(H)]′W [S(G)− S(H)]

where W is a diagonal matrix with diagonal elements Wii = 1/[Si(G)]2. The

tolerance level is ν = 0.15.

When the MCMC algorithm generates multiple pseudo-observations H, I

use the average: ρ(S(G), {S(Hk)}k∈K) = 1
|K|
∑
k ρ(S(G), S(Hk)).

9.2. The “Jump” Function

The following description closely follows Sadegh & Vrugt (2014). The only

substantial difference is to the random sampling of the dimensions of θ (see step

1 below). The jump function is such that:

1. Only a subset of the dimensions of θ are updated. Each dimension is

updated with a 20% probability.

2. Conditional on being selected for updating, the “jump” on the dimension

r′ of θ uses the information from three other chains to generate the jump

and is equal to:

(1 + er1)σ

 ∑
m∈M̂

θr
′,t−1
m −

∑
m∈M̃

θr
′,t−1
m

+ er2

where er1 ∼ U(−0.1, 0.1), er2 ∼ N(0, 10−12), σ = 2.38/
√

6d) (d is the

total number of dimensions of θ that are updated at this step of the

algorithm), θr
′,t−1
m is the dimension r′ of θt−1m , and M̂ and M̃ are random

samples of three chains (excluding the chain being updated, and without

replacement).

34



9.3. Acceptance Probability During Burn-In

In order to help the convergence to the stationary distribution during the

burn-in phase, Sadegh & Vrugt (2014) propose using the following acceptance

probability: pacc = min
(

1,
p(θ∗m)

p(θt−1
m )

)
if ρ(S(H∗m), S(G)) ≤ ν or if ρ(S(H∗m), S(G)) ≤

ρ(S(Ht−1
m ), S(G)), thus accepting draws with smaller distances even if the dis-

tance is larger than the tolerance level.

Also during the burn-in phase, I remove extreme chains using the following

procedure. Looking at the distribution of distance at every step, I look at the

chain with the largest distance. If this largest distance is greater than two

standard deviations above the mean, I replace the chain with another randomly

selected chain. I repeat until more than 90% of the chains have surpassed the

tolerance level. Chains below the tolerance level are then are randomly assigned

values from chains that passed the tolerance level.

All chains reached the threshold after 1315 steps of the MCMC algorithm.

(The actual burn-in is considered to be the 69,999 first steps; see below.)

9.4. Prior Distribution

The prior distributions are flat, i.e. all parameters are normally distributed,

with a mean equal to the complementary log-log estimates (see Table 3) and a

variance of 100.

9.5. Convergence Tests

Following Sadegh & Vrugt (2014), I consider that the MCMC algorithm

reaches the stationary distribution when the Gelman and Rubin’s convergence

test (Gelman & Rubin, 1992) is less than 1.2 for all parameters, dropping the

first half of the MCMC steps. The output of the test is displayed in Table 5. The

final number of steps is 21,000. For any statistic of the stationary distribution, I

drop the first 69,999 steps, so all draws from steps 70,000 to 120,000 are assumed

to be from the stationary distribution.
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Table 5: Gelman and Rubin’s Convergence Test (for second half of the 120,000 steps

Variable Value
Gender 1.20
Hispanic 1.03
White 1.04
Black 1.09
Asian 1.00
Grade 1.10
Education (Mother) 1.09
Work (Mother) 1.04
Education (Father) 1.07
Work (Father) 1.04
Intercept 1.08
Reciprocal links (logs) 1.00
Cliques (logs) 1.00

9.6. Computing Time

The estimation was performed on a Thinkstation D40, with two Intel Xeon

E5 2609 @ 2.40GHz (total of 8 cores), with 40GB of RAM in about 4 days.

9.7. Summary Statistics

The distribution of the summary statistics at the stationary distribution

(the posterior distribution) is displayed in Figures 3 and 4. Observed values are

displayed in black.

9.8. Posterior Distribution

The posterior distributions for all parameters are displayed in Figures 5 and

6.
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Figure 3: Distribution of the Summary Statistics at the Posterior Distribution
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Figure 4: Distribution of the Summary Statistics at the Posterior Distribution (continued)
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Figure 5: Posterior Distributions
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Figure 6: Posterior Distributions (continued)
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