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This paper investigates international index return predictability using option-implied information. 
We document the significant predictive power of the variance risk premium (VRP), Foster-Hart risk 
(FH), and higher-order moments for horizons ranging from 1 to 250 days. Our results from predic-
tive regressions show that these four risk-neutral metrics, which have the advantage of daily upda-
ting, perform well internationally. VRP and FH risk are significant predictors for several horizons, 
including less than one month (VRP) and longer horizons (FH). Risk-neutral skewness and kurtosis 
are significant for several countries across multiple horizons. Out-of-sample forecasts and utility 
gain calculations confirm the statistical and economic significance of these risk-neutral variables 
internationally.
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1. – Introduction 

A large literature has explored long-horizon index return predictability using predictive regressions 

(Rapach and Zhou, 2013). In particular, recent evidence suggests that the variance risk premium (VRP), 

the difference between option-implied and realized variances, provides a parsimonious way to 

outperform traditional, macroeconomic predictive variables such as the consumption/wealth ratio (e.g., 

Bollerslev, Tauchen, and Zhou, 2009). While the relevance of VRP to predict future index returns is 

recognized, the literature is scarce when it comes to using information from the risk-neutral distribution--

aside from variance--to improve forecasts.  

Predictive variables constructed from options markets are appealing for forecasting purposes 

relative to variables that reflect realizations, as they are forward-looking and capture the risk-adjusted 

expectations of market participants (Constantinides, Jackwerth, and Perrakis, 2007). Moreover, theory 

suggests that these variables should be relevant, as substantial price discovery occurs in options markets 

(Easley, O’Hara and Srinivas, 1998). The relevance of higher moments is further underscored by the 

non-normality of the risk-neutral index return distributions (e.g. Jackwerth and Rubinstein, 1996). 

Higher-order moments can also be estimated more reliably using the risk-neutral distribution compared 

to the historical distribution (Conrad, Dittmar and Ghysels, 2013). Thus, it is appealing to develop 

additional option-implied metrics that can capture this information for use in predictive regressions.  

This paper investigates the predictive power of option-implied information for stock market index 

returns using data for five major international equity indexes (S&P500, DAX, FTSE, CAC, and SMI) at 

horizons ranging from one day ahead to one year ahead. Our motivation is to study together for the first 

time several distinct option-implied measures of risk to forecast index returns. Our evidence relies on 

both predictive regressions and out-of-sample forecasts, presented as complementary evidence in support 



 

4 

 

of return predictability. We retain four option-implied predictive variables.
1
 The VRP is included to 

build on the existing literature on predictive regressions (Bollerslev, Marrone, Xu and Zhou, 2014). The 

other variables, however, have not been studied using predictive regressions. They are risk-neutral 

skewness (RNS) (Stilger, Kostakis and Poon, 2017), risk-neutral kurtosis (RNK) (Bakshi and Cao, 

2003), and Foster-Hart riskiness (FH) (Foster and Hart, 2009; Bali, Cakici and Chabi-Yo, 2011), a 

measure of bankruptcy risk. We argue that each variable captures a particular aspect of risk that is non-

redundant to the investor, and thus should be reflected in future returns. These four variables are 

obtained from the risk-neutral distribution, and have been previously studied (separately) for the U.S. 

market. Given that most of the evidence from option-implied variables pertains to the cross-sectional 

domestic setting, we provide novel international evidence using predictive regressions and out-of-sample 

frameworks.  

The paper makes two contributions to the literature. First, we provide international evidence of 

the predictive performance of several option-implied risk variables beyond the VRP in a joint setting. 

While previously such evidence was limited to the VRP using predictive regressions, we present 

evidence for three additional option-implied predictors and by means of out-of-sample forecasts in 

addition to predictive regressions. These results suggest both statistical and economic significance. 

Second, we provide new evidence of predictability using option-implied variables at horizons of less 

than one month, as well as longer horizons than the previously-documented quarterly peak. To our 

knowledge, ours is the first study to provide such evidence.  

We investigate these predictive variables using a forecasting methodology that is benchmarked 

with the literature (Clark and McCracken, 2013; Chen, 2009; Ludvigson and Ng, 2007; Maio and Santa 

                                                   
1
 Other measures could be considered, including downside risk metrics (such as value-at-risk or expected shortfall), or 

alternative measures of dispersion such as interquartile ranges. However, their high correlations with VRP suggest that they 

are redundant for our analysis. Moreover, the VIX or realized variance alone have no predictive power (Bollerslev, Tauchen 

and Zhou, 2009) and are thus omitted.   
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Clara, 2015; Rapach, Strauss and Zhou, 2013). First, to allow for higher-frequency return forecasts than 

previously shown in the literature, we estimate constant-horizon risk-neutral distributions (RNDs) for 

each equity index using daily options data. Each of the four predictive variables is then measured using 

the estimated daily RNDs. To evaluate their respective predictive power, we first run predictive 

regressions and compute the regression R
2
 as well as the significance of each variable’s slope coefficient. 

In accordance with the literature, simulations are performed on the critical points of our tests to account 

for persistence in cumulative returns (Bollerslev et al., 2014; Rapach and Zhou, 2013). Then, we conduct 

out-of-sample forecasts, compute the 𝑅𝑂𝑂𝑆
2  , and use forecasting tests to assess the significance of the 

forecast improvements (Clark and MacCracken, 2005). As with the predictive regressions, our data are 

sampled at a daily frequency, and several horizons ranging from one to 250 days are studied. 

This paper finds, first, that across countries in our sample VRP has significant predictive power 

for future returns for a wider range of horizons than previously shown. More specifically, we document 

stock index return predictability below one month, which matters to investors. The additional proposed 

variables are relevant to describe risk beyond the variance risk premium. We show that FH riskiness 

contributes predictive power, and typically at longer horizons than does VRP. The out-of-sample 

forecast evidence supports the results obtained from predictive regressions, as VRP and FH are 

complementary for forecasting purposes. Risk-neutral skewness and kurtosis are distinct from FH risk 

and contribute incremental predictive power in addition to the inclusion of FH risk. Internationally, we 

find out-of-sample evidence of return predictability. For all countries at least at some horizons, the out-

of-sample performance is statistically and--using utility gain computations--economically significant. 

This is a novel result for our option-implied risk variables, and a significant one because predictability is 

considerably more difficult to obtain from out-of-sample forecasts than from predictive regressions (e.g. 

Goyal and Welch, 2007).     
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1.1 – REVIEW OF THE LITERATURE 

The first contribution of this paper to the existing literature concerns the international predictive power 

of option-implied variables beyond the VRP. We assess, in a joint setting, the performance of VRP, 

Foster-Hart risk, and risk-neutral skewness and kurtosis using both predictive regressions and out-of-

sample forecast tests. This is a meaningful contribution because the prior literature in this area has 

focused only on VRP and predictive regressions. We now summarize the current state of the literature 

for each chosen risk-neutral variable. 

VRP: VRP has been interpreted as a fear gauge or as the price investors pay to hold assets that 

will pay off higher returns specifically in high-volatility states [Bollerslev, Tauchen and Zhou (2009), 

Carr and Wu (2009, 2016)]. The literature has found that VRP is a concise and economically meaningful 

way to link option-implied information to an asset’s future returns. There is strong evidence that the 

stock market VRP has explanatory power for U.S. stock returns [Bali and Zhou (2016), Bekaert and 

Hoerova (2014), Carr and Wu (2009, 2016)]. Bollerslev, Tauchen and Zhou (2009) find that VRP 

predicts S&P index returns particularly well at a quarterly horizon, and that it outperforms traditional 

variables such as the Price/Earnings (P/E) ratio or the consumption-wealth ratio. International evidence 

for VRP’s usefulness is limited, however. Bollerslev, Marrone, Xu and Zhou (2014) run predictive 

regressions using VRP for international equity indexes and find results that are similar to the S&P for 

most countries in their sample (see also Londono, 2015). Both U.S. and international studies, however, 

use monthly-sampled data. 

FH: Foster and Hart (2009) introduce a measure of riskiness (FH) representing the critical wealth 

level above which it becomes safe for an investor to accept a particular gamble [see also Aumann and 

Serrano (2008)]. The measure is equivalent to a strategy that guarantees the investor will avoid 

bankruptcy. The existing literature on the link between Foster-Hart risk and financial returns is recent 
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and developing. Recent research has found that a generalized version of FH risk has predictive power for 

the risk-adjusted returns of individual U.S. stocks, and can be useful to improve portfolio allocation 

[Bali, Cakici, and Chabi-Yo (2011); Leiss and Nax (2018)] and portfolio performance (Anand, Li, 

Kurosaki and Kim, 2016). However, little is known about the predictive power of FH risk for index 

returns, how this measure relates to other option-implied variables, or how it performs internationally or 

out-of-sample. Our study expands on this recent literature on several fronts. First, we look at U.S. and 

international equity indexes rather than only U.S. stocks. Second, we study FH risk jointly with VRP and 

risk-neutral higher moments, in order to better assess its incremental predictive power. Finally, we 

perform out-of-sample forecasting tests rather than rely only on the evidence from predictive regressions.  

Risk-neutral skewness and kurtosis: 

The prior literature relates RNS to negative asymmetric returns in asset markets (Conrad, Dittmar and 

Ghysels, 2013) and is can be interpreted as “crash-phobia” (Rubinstein, 1994) or as the cost of insuring 

against crash risk [Brunnermeier, Nagel and Pedersen (2008); Doran, Carson and Peterson (2006)]. RNK 

can be interpreted as a tail risk proxy (Bakshi and Cao, 2003). Several papers document the relevance of 

RNS for the cross-section of expected returns [Chang, Christoffersen and Jacobs (2013); Bali and 

Murray (2013); Dennis and Mayhew (2002); Conrad, Dittmar and Ghysels (2013)]. Relatedly, 

Diavatopoulos, Doran, Fodor and Peterson (2012) show for individual U.S. equities that risk-neutral 

higher moments anticipate earnings announcements and thus help explain equity returns.  

In contrast to cross-sectional studies, however, there is very little evidence on higher moments in 

predictive regressions. The existing literature focuses on U.S. data. Stilger, Kostakis and Poon (2017) 

show that risk-neutral skewness and kurtosis have predictive power for individual U.S. stock returns. 

Their results for individual equities suggest that RNS and RNK contribute distinct information. 

Similarly, Rehman and Vilkov (2012) find that individual U.S. stock option risk-neutral skewness has 
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predictive power for equity returns. This recent U.S. evidence of the predictive power of higher-order 

moments supports our thorough examination of the question, as international evidence in this area is 

scarce. 

Our second contribution is to provide evidence of return predictability at horizons of less than 

one month (see e.g. Cremers and Weinbaum, 2010; Diether, Lee and Werner, 2008) as well as for longer 

horizons. While the prior literature has focused on a monthly frequency, we construct constant-maturity 

RNDs, allowing us to obtain the predictive variables at a daily frequency. Our results show evidence of 

return predictability under one month for several markets both using predictive regressions as well as 

out-of-sample tests. The existing literature has focused on long-horizon regressions because the 

macroeconomic variables that are typically used to predict returns have a lower sampling frequency. 

This literature has usually adopted a monthly frequency and has reported a peak in predictability at the 

quarterly horizon (Bollerslev, Tauchen and Zhou, 2009; Bollerslev et al., 2014). Shorter horizons are, 

however, of considerable interest, as risk management practices are often focused on short-run measures 

[e.g., Brown (2001); Brownlees, Engle and Kelly (2014); Christoffersen and Diebold (2000)]. 

Unfortunately, it is not feasible to sample traditional predictive variables at a less-than-monthly 

frequency. In addition, it is well known than option-implied data reflect information not found in 

realized asset returns (Chang, Christoffersen and Jacobs, 2013). Thus, it is more sensible to use risk-

neutral distributions to construct high-frequency predictor variables. It is therefore fitting to investigate 

the forecasting power of VRP and our other risk variables at a higher frequency than monthly.    

2. – Methodology 

2.1 – EMPIRICAL RISK-NEUTRAL DISTRIBUTIONS 

To obtain the explanatory variables of interest, we first have to recover the empirical risk-neutral 

distribution from a set of option prices. We follow the method described in Birru and Figlewski (2012) 
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by first calculating the empirical RND and then fitting each missing tail to a Generalized Extreme Value 

(GEV) distribution. This methodology is motivated by the goal of reliably measuring higher-order risk-

neutral moments as well as Foster-Hart risk, which depend on the full distribution. For instance, using 

the Bakshi, Kapadia and Madan (2003) method (see also Britten-Jones and Neuberger, 2000) to recover 

the moments of the empirical risk-neutral distribution limits how one can extrapolate outside of available 

strike prices and can affect how the tails are modeled (Markose and Alentorn, 2011; Elliott and 

Timmermann, 2013). Details are provided in Appendix I.  

2.2 – RISK-NEUTRAL MOMENTS AND THE VARIANCE RISK PREMIUM 

Once the risk-neutral distribution 𝑓(𝑥)  is computed for a given day, its central moments are given by the 

usual mass function formulas: 

     𝑀𝑛 = ∫ (𝑥 − 𝑐)𝑛𝑓(𝑥) 𝑑𝑥
∞

−∞
     (1) 

𝑉𝑎𝑟 =
𝑀2

𝑇
 

𝑆𝑘𝑒𝑤 =
𝑀3

𝑀2
3/2 

𝐾𝑢𝑟𝑡 =
𝑀4

𝑀2
4/2 

The variance risk premium (VRP) is obtained each day by subtracting the realized variance computed 

from intraday returns (see section 3.1) from the risk-neutral variance of eq. (1).  

2.3 – FOSTER-HART MEASURE OF RISKINESS 

Foster-Hart risk provides a measure of bankruptcy risk. More generally, given a lottery represented by 

the random variable X, the Foster and Hart (2009) measure of riskiness ρ is the solution to this equation: 

      Ε [log (1 +  
𝑋

𝜌
)] = 0     (2) 
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The measure of riskiness ρ represents the critical wealth level below which the investor will reject the 

gamble in order to avoid the risk of bankruptcy. Bali, Cakici and Chabi-Yo (2011) generalize this 

measure whereby it solves the following equation: 

      Ε [
(1+ 

𝑋

𝜌
)

𝛿
−1

𝛿
] = 0     (3) 

where 𝛿 = (1 − 𝛾) for γ the coefficient of relative risk aversion for a representative investor with CRRA 

utility. In a financial setting, the random variable X is the return on an index over a certain horizon. As 

noted by Bali, Cakici and Chabi-Yo (2011), the solution ρ of eq. (3) should be restricted to values that 

are greater than the maximum loss of the gamble. With a stock index, the lowest possible return is -

100%. If the resulting measure of riskiness is limited by this restriction, it might not be a very 

informative signal as it could take exactly the same minimal value for many consecutive days. This can 

be prevented by using a sufficiently low value for δ. In our case, 𝛿 =  −4. The riskiness measure is 

scaled for use in the linear regressions by using the transformation: 𝐹𝐻𝑡 = ln (𝜌𝑡).  

2.4 – PREDICTIVE REGRESSIONS 

This paper investigates the predictive power of several variables implied from options on equity indexes. 

We consider a linear model where excess index returns from time t to t+h are explained by the following 

variables at time t:  

           𝑅𝑡,𝑡+ℎ =  𝑏0 + 𝑏1 ∙ 𝑉𝑅𝑃𝑡 + 𝑏2 ∙ 𝐹𝐻𝑡 + 𝑏3 ∙ 𝑅𝑁𝑆𝑡 + 𝑏4 ∙ 𝑅𝑁𝐾𝑡 + 𝑢𝑡  (4) 

where VRP is the variance risk premium defined as risk-neutral variance minus realized variance from 

intraday returns; RNSt and RNKt are respectively the third and fourth moments of the risk-neutral 

distribution at time t; and FHt is the Foster-Hart measure of riskiness computed from the risk-neutral 

distribution. Following Bollerslev et al. (2014), we use bootstrapped critical values to evaluate standard 

errors. We use a simulation design based on the VAR (1) GARCH(1,1) DCC model (Engle, 2002) 
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suggested in Bollerslev et al. (2014) to compute bootstrapped critical values for the Newey-West t-

statistics for each of the four predictive variables in the regression analysis. The bootstrap design is 

presented in Appendix II. 

2.5 – OUT-OF-SAMPLE RETURN FORECASTS 

To build additional evidence on return predictability, we conduct out-of-sample forecast tests (for a 

survey, see Clark and McCracken, 2013). This out-of-sample empirical strategy has been used before in 

the stock return predictability literature (e.g., Campbell and Thompson, 2008; Polk, Thompson and 

Vuolteenaho, 2006; Rapach, Strauss and Zhou, 2013), but not to investigate option-implied predictive 

variables. The linear model described in Equation (4) is therefore used to perform out-of-sample 

forecasting on the last 30% of the sample of index returns. This model is calibrated using the first 70% of 

the sample to make one h-day-ahead prediction, for h varying from one to 250 days. The next day, the 

model is recalibrated using the same, fixed length of past observations (70% of the sample), and as a 

result one new h-day-ahead prediction is made. This computation is repeated until the end of the sample. 

The prediction errors from the forecast are then compared to those of restricted specifications of model 

(4) to better identify the contribution of each of the different predictive variables. 

Then, three measures of statistical significance are reported. First, we use a modified Diebold-

Mariano (1995) test on the squared prediction errors that takes into account the effect of the overlapping 

periods of returns (Harvey, Leybourne, and Newbold, 1997). The null hypothesis of this test is that of 

equal forecast performance for two models. It is based on the series 𝑑𝑡 of differences between the 

squared forecast errors (u2
) of two models at each period t. Given that this type of test is one-sided to the 

right, we reject the null hypothesis of equal forecasting performance if the test statistic is larger than the 

critical value. We use bootstrapped critical values based on recommendations from the literature 

regarding direct multistep predictions from nested regression models (see e.g., Clark and McCracken, 
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2005). The bootstrap design is similar to the one used to evaluate the predictive regressions above and is 

also presented in Appendix II. 

The second test is also a test of forecast accuracy, but it is based on an F-type test of equal mean 

squared error (MSE) proposed in Clark and McCracken (2005). This test statistic is given by: 

      𝑀𝑆𝐸𝐹 = 𝑛 ×
�̅�

𝑀𝑆𝐸2
     (5) 

 where �̅� is the mean of the 𝑛 observations in 𝑑𝑡 and  𝑀𝑆𝐸2 is the mean squared error of the unrestricted 

model. 

The third test considers forecast encompassing rather than accuracy. The purpose is to assess 

whether the information content of one set of forecasts dominates the other. Following Clark and 

McCracken (2005), an F-test is used which is based on the covariance between u1,t
2  and (u1,t

2 − u2,t
2 ). 

This test statistic, denoted ENCF, is given by: 

     ENCF = n ×
c̅

MSE2
      (6) 

     ct = u1,t
2 × (u1,t

2 − u2,t
2 )     (7) 

     c̅ =
1

n
∑ ct

n
t=1        (8) 

The covariance term ct is positive when the additional variables in the unrestricted model 2 have 

predictive power. This test is also one-sided to the right. Clark and McCracken (2005) find that for these 

test statistics, a bootstrap approach provides more reliable results than their alternative approach, based 

on asymptotic critical values.
2
 Thus, in our analysis, the MDM, MSEF and ENCF test statistics are 

compared to critical values constructed from the same bootstrapped series presented in Appendix II. 

                                                   
2 Clark and McCracken (2005) show that asymptotic critical values are oversized at long horizons, while bootstrap critical 

values yield better-sized results. This difference is even greater at longer horizons, where they find that: “Once the forecast 

horizon increases beyond a few periods, neither a standard normal approximation nor our asymptotic distribution yields 

reliable inference in finite samples; bootstrap methods are much more reliable” (p.390). 
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The significance of this forecast improvement is assessed using an out-of-sample 𝑅𝑂𝑂𝑆
2 . For a 

given test, an unrestricted forecasting model is compared to a restricted model where one or more 

variables are excluded. Following Campbell and Thompson (2008), we compute 𝑅𝑂𝑂𝑆
2 = (1 −

𝑀𝑆𝐹𝐸𝑢𝑛𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑

𝑀𝑆𝐹𝐸𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑
) where MSFE is the mean squared forecast error.  

Finally, a utility-based metric is used to quantify the economic significance of the out-of-sample 

results. As presented in Rapach and Zhou (2013), this metric represents the utility gained by a mean-

variance investor with a relative risk-aversion coefficient 𝛾 who allocates his portfolio between stocks 

and a risk-free asset according to the forecasted equity premium.
3
 This utility-based metric has been 

used, for example, in Rapach, Strauss and Zhou (2010) and Dangl and Halling (2012). For period t to 

t+1, the share of the portfolio invested in equities is: 

       𝑎𝑖,𝑡 =
1

𝛾
× 

�̂�𝑖,𝑡+1

�̂�𝑡+1
2      (9) 

where �̂�𝑖,𝑡+1 and 𝜎𝑡+1
2  are the return and variance forecasts according to a specified model.

4
 The average 

utility realized by this investor over the forecasting period is given by: 

       �̂�𝑖 = �̂�𝑖 − 0.5𝛾𝜎𝑖
2     (10) 

where �̂�𝑖  and 𝜎𝑖
2 are the mean and variance of the portfolio returns over the forecasting period. The 

difference in realized utility between the two nested models represents the utility gained by the investor 

from using the additional information revealed by the unrestricted model over the period studied. This 

utility gain can be interpreted as the management fee the investor would be willing to pay to access this 

additional information. 

                                                   
3 Following Rapach, Strauss and Zhou (2010), we report results for 𝛾 = 3 and portfolio weights 𝑎𝑖,𝑡 that are restricted to [0%, 

150%]. We have also performed robustness checks using 𝛾 = 5, and the results concur. 
4
The return forecast is computed using Equation (5) while the variance forecast is based on the realized volatility of the past 

month (the same measure used in computing the VRP in section 3.1) and scaled for the appropriate horizon.   
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3. – Data 

3.1 – REALIZED VARIANCE, INDEX RETURNS AND RISK-FREE RATES 

Equity index excess returns are computed including dividends using data from Bloomberg. Country risk-

free rates index are obtained from the FRED website of the Federal Reserve Bank of St. Louis.
 
Realized 

variances computed as the sum of the 5-minute realized variance and squared overnight returns of the 

past month for each index are obtained from the Oxford-Man Institute’s realized library’s website (Gerd, 

Lunde, Shephard and Sheppard, 2009).  

3.2 – OPTION DATA 

Index option data are obtained from OptionMetrics Ivy DB U.S. and Europe. The selected indexes are 

those with the most options available among the markets covered by this database. They are the S&P500 

index for the United States, the DAX index for Germany, the SMI index for Switzerland, the CAC index 

for France, and the FTSE index for the United Kingdom. These markets are significant for the Eurozone, 

and have active index options markets. Strike prices, maturities, and implied volatilities are extracted at a 

daily frequency for all available options on the selected indexes. Table I presents descriptive statistics for 

the raw data on options.  

3.3 – DESCRIPTIVE STATISTICS OF THE TIME SERIES  

Table II presents the descriptive statistics for the time series of predictive variables computed from the 

risk-neutral distribution. Judging from their low correlation coefficients, the selected variables represent 

different components of the risk-neutral distribution.
5
  For all indexes, VRP and FH increase 

substantially during the financial crisis in early 2009.  

                                                   
5
 Since the correlation between RNS and RNK for SMI is .68, we also ran regressions containing only one of these variables. 

Results are stable across the sample and horizons and largely similar to the ones reported, and thus are omitted for brevity.  
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4. – Results 

4.1 – PREDICTIVE REGRESSIONS OF FUTURE INDEX RETURNS  

Future returns for all indexes at different horizons h (in business days) are regressed on the explanatory 

risk-neutral variables as presented in eq. (4). Figure 1 shows the results of two-sided individual 

significance tests for different return horizons h. The results are shown as Newey-West corrected t-

statistics computed from 10,000 bootstrapped series. In the discussion below, we use the 10% level of 

significance, which is customary in this literature (e.g., Bollerslev et al., 2014; Rapach and Zhou, 2013), 

but other levels are reported in the figure and further confirm our interpretation of the findings.  

4.1.a – Assessing the Evidence of Predictability using the Adjusted R
2
 

We first want to assess the performance of risk-neutral variables in predictive regressions. Figure 2 

(panels A through E) presents graphically the regression R2
s against different horizons, separately for 

each index. The pattern is similar across indexes, with the R2
 being lowest at the shortest horizons and 

increasing about monotonically with the horizon. As shown by Kirby (1997), regressions using 

overlapping return data can generate 𝑅2s that increase mechanically with the horizon even if the 

variables have no predictive power. To address this, we compute and report graphically the percentiles of 

𝑅2 for regressions on the bootstrapped time series under the null of no informative content. Thus, 

significance is achieved when the regression’s actual 𝑅2 is greater than the simulated 𝑅2 for a given 

horizon.  

Nearly in all cases, the 𝑅2 exceeds the simulated 𝑅2. For the S&P 500 index, 𝑅2 increases with 

the horizon from about 1% to 18%, peaking at 250 days, and always exceeds the simulated 𝑅2. For 

DAX, 𝑅2 increases from less than 1% to about 9%, plateauing around 60 days (3 months), and is 

significant for all horizons above 25 days. For SMI, 𝑅2 increases from about 1% to 10%, peaking at 

about 60 days, and is always significant. For CAC, 𝑅2 increases from about 1% to 16% peaking at about 
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60 days and is always significant. For FTSE, 𝑅2 increases from less than 1% to about 12% reaching a 

plateau around 80 days (4 months), and is significant for horizons above 12 days. These results are 

economically significant, as they compare favorably to the 𝑅2 for different predictive variables reported 

by Bollerslev, Tauchen and Zhou (2009) which range from 0-4% at a monthly horizon. Since the model 

is significant for all the countries considered, we now assess the marginal contribution of each variable 

in each case.   

4.1.b – Variance Risk Premium 

Using monthly returns, Bollerslev et al. (2014) find a peak of predictability for VRP at a quarterly 

horizon. Using our daily sampled series, we show that VRP also has predictive power for shorter 

horizons (under one month) and longer horizons (up to 6 months). For the S&P index, we find 

predictability for horizons of about 3-100 days, that is, up to 5 months. For SMI, it is significant at 

horizons of 1-35 days and 50-100 days. For CAC, it is significant over horizons of 10-125 days. For 

FTSE, we find predictability for 15-20 days and 75-125 days. Finally for DAX, it is significant for 50-90 

days, which is roughly the quarterly horizon. Thus, VRP is relevant and positively related to future 

returns, in line with Bollerslev et al. (2014). We corroborate their finding of predictability at the 

quarterly horizon and also document new evidence of short-horizon predictability.  

4.1.c – Foster-Hart Risk 

Foster-Hart riskiness serves to capture the likelihood of large negative returns and the risk of bankruptcy. 

Financial theory suggests there should be a positive relation between FH and future returns, as the 

investor requires higher expected returns when his investment is at greater risk of large losses. Our 

results present the first international evidence related to FH risk and the first evidence of FH risk 

performance in predictive regressions. The results suggest that FH risk is relevant to predict future 

returns internationally. Our regressions show that FH offers return predictability at the international level 
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with a positive slope, as expected. FH is typically significant for horizons of 20 to 120 business days 

(i.e., 1 to 6 months), with some variation between indexes. This return predictability extends to 200 days 

for SMI and to 250 days for the S&P. Based on these results, we argue that the longer-horizon 

predictability of FH is complementary to information contained in VRP.  

4.1.d – Risk-neutral Skewness 

Risk-neutral skewness is significantly and positively related to future returns for all indexes except 

DAX, for which it is not significant. It is significant at short horizons of less than one week (S&P, FTSE 

and CAC), one month (S&P, FTSE and CAC), and longer than 50 days (FTSE, CAC) or 100 days (S&P, 

SMI). Although there is not a clear pattern of predictability, the variable is useful at several different 

horizons for all indexes but one. 

The positive coefficient on risk-neutral skewness means that when its level is higher, buying the 

index leads to higher future returns. Although this result differs from the cross-sectional evidence on 

realized skewness or risk-neutral skewness [e.g., Amaya, Christoffersen, Jacobs and Vasquez (2015); 

Conrad, Dittmar and Ghysels (2013)], it is consistent with the evidence for individual stocks in Stilger, 

Kostakis and Poon (2017). They find that a quintile portfolio of low skewness stocks significantly 

underperforms the quintile portfolio of high skewness stocks. According to their analysis, this 

underperformance comes from the highly negative risk-neutral skewness of stocks that are “overpriced 

but hard to sell short” according to investors. A similar positive relation between risk-neutral skewness 

and future returns of individual stocks is found by Rehman and Vilkov (2012). While these papers 

confirm our finding in other settings, the advantage of our skewness measure relies in its construction 

from the complete risk-neutral distribution using GEV tails, preventing the over-importance of the center 

of the distribution in the computations.  
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4.1.e – Risk-neutral Kurtosis 

Risk-neutral kurtosis is usually interpreted as risk-adjusted “tail risk”, so we expect a higher measure of 

tail risk today to lead to higher future returns. The positive relation between kurtosis and expected 

returns in the cross-section is documented in Conrad, Dittmar and Ghysels (2013) and Amaya et al. 

(2015). This study confirms the result, as the kurtosis slope coefficient is positive when significant. We 

find a significant and positive relation for S&P, CAC and FTSE at horizons above 20 days, and for all 

horizons in the case of the S&P. Kurtosis is not significant for DAX or SMI.
6
 To our knowledge, these 

are the first findings of index return predictability using risk-neutral kurtosis and in particular, the first 

evidence of return predictability under one month using kurtosis (for S&P500). 

4.2 – OUT-OF-SAMPLE FORECAST ANALYSIS 

We now examine the out-of-sample performance of forecasting returns using different variations of the 

linear model in (4). Our objectives are threefold: 1) to build evidence regarding the predictive power of 

our option-implied variables with out-of-sample results and to provide a more thorough evaluation of 

option-implied information than what is typically reported, 2) to explore the forecasting power of each 

variable separately, and 3) to benchmark our results against a traditional constant model (i.e., forecasting 

with the historical mean). This is done using the three test statistics (MDM, MSEF, ENCF). In each case, 

a significantly positive test statistic implies that the unrestricted model performs significantly better than 

does the restricted model and thus, that the additional variables have forecasting power over future 

returns. For each index, the first 70% of the time series observations are used to construct a rolling 

window and to calibrate each day a new forecasting model. The predictions made on the last 30% of the 

data are used to evaluate its performance. 

                                                   
6
 For SMI it is significant and negative for only two specific longer horizons. 
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The 𝑅𝑜𝑜𝑠
2  for the return forecasts can be interpreted as the fraction of the benchmark model’s 

forecast error that can be explained by the unrestricted model’s additional variable(s). For a given 

horizon, we compare the 𝑅𝑜𝑜𝑠
2  for different models (Campbell and Thompson, 2008). This measure 

indicates the economic importance of each explanatory variable for a given return horizon. The results 

are provided in table III, panels A through E, for each of the five equity indexes. In each panel, each row 

reports a different case corresponding to a comparison between two models. As such, rows 1-4 in each 

panel examine the contribution of each individual variable against the benchmark of using only a 

constant. Rows 6-9 report the marginal contribution of a given variable by comparing the full model 

against the same model omitting one variable. Row 5 compares the full model against the benchmark. 

4.2.a – Variance Risk Premium 

Row 1 shows that VRP significantly improves on the constant-only model across most indexes for short 

return horizons of 1 to 5 business days. At a horizon of 5 business days, the model including VRP is 

significantly better according to the three test statistics considered for several indexes (S&P500, DAX, 

CAC), and for two of three test statistics for FTSE. VRP is particularly informative for the S&P500, 

where it improves on the base model for all horizons. Internationally, we find predictive power at the 

longest horizon of 250 days for the DAX and FTSE.  

Row 6 provides an alternative assessment that VRP is not a redundant variable, by comparing the 

full model to the full model omitting VRP. Moreover, this novel evidence of short-run predictability 

suggests once more that the “fear gauge” interpretation of VRP is relevant at shorter horizons than 

previously understood. Indeed, in the out-of-sample forecasts across indexes, the informative content of 

VRP is generally significant for horizons under 1 month. This finding represents new evidence obtained 

from daily frequency data that provides additional support for the relevance of VRP in international 

equity markets as well as in the U.S. 
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4.2.b – Foster-Hart Risk 

The contribution of Foster-Hart risk is assessed in rows 2 and 7. Row 2 shows that out-of-sample, FH 

risk is more important for longer return horizons of 20 to 250 business days (S&P500, DAX and CAC). 

The evidence is strongest for the S&P500 where FH is significant according to all test statistics for 

horizons of 20 to 250 business days. For the SMI, FH improves upon forecasts at an annual horizon. FH 

is not meaningfully significant out-of-sample for FTSE. Overall, we observe that FH has a higher 

explanatory power (𝑅𝑜𝑜𝑠
2 ) for horizons above 20 business days, while VRP is more important for 

horizons under 20 days. Row 7 confirms that those results hold when the marginal contribution of FH is 

investigated with respect to the other option-implied variables.  

4.2.c – Risk-neutral Skewness 

Rows 3 and 8 of each panel document the contribution of risk-neutral skewness to predicting out-of-

sample index returns. For the S&P index, row 3 shows a significant improvement at the 1- and 2-day 

(MDM), 20-day (MDM and MSEF) and 250-day-ahead horizons (MDM, ENCF and MSEF). However, 

the results do not remain significant in row 8, when the marginal contribution of skewness is assessed. 

For CAC, row 3 reports significance for horizons of 5-100 days (MDM, ENCF and MSEF) and 100-250 

days (ENCF and MSEF). When compared against the other option-implied variables (row 8), the results 

are broadly similar, with significance for 5-100 days (MDM) or 50-250 days (ENCF and MSEF). For 

DAX, skewness is significant against the benchmark for horizons of 2-5 days (MDM) and 5-20 days 

(MDM, ENCF and MSEF). It remains significant for horizons of 1 day (MDM) and 20 days (MDM, 

ENCF and MSEF) when all variables are included. Skewness is not significant for SMI or FTSE.  

4.2.d – Risk-neutral Kurtosis 

Evidence for the informative content of risk-neutral kurtosis in out-of-sample forecasts is presented in 

rows 4 and 9. Overall, the evidence is weaker than for the other variables. For CAC, row 9 reports that 
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kurtosis is significant at the 1- and 2-day (MDM and MSEF) and 100-250 day horizons (ENCF and 

MSEF). Moreover, for CAC the 250-day 𝑅𝑜𝑜𝑠
2  is 4.2%. For FTSE, it is significant at the 100-day horizon 

(ENCF and MSEF), with an 𝑅𝑜𝑜𝑠
2  of 1.4%. However, kurtosis is not significant for S&P, DAX or SMI.  

4.2.e – Economic Significance  

Table III also reports annualized utility gains and shows that nearly all statistically significant results are 

also economically significant. For example, at a horizon of 20 business days on the S&P500, a mean-

variance investor with relative risk-aversion of 3 would be willing to pay an annual management fee of 

up to 2.5% to have access to the information represented by the four studied variables.
7
  

Indeed, as observed by Rapach and Zhou (2013), even when statistical tests fail to detect out-of-

sample improvements, a utility-based metric can indicate clear economic significance. This is the case 

for skewness (row 8 in each panel), which is economically significant at some horizons for most indexes. 

There is also evidence that kurtosis (row 9) is economically significant for S&P500 and CAC. Moreover, 

although the statistical evidence for Foster-Hart risk is weaker for the SMI and FTSE indexes, this 

variable is economically significant for all indexes (rows 2 and 7). Finally, the complementarity of VRP 

and FH is also found in the utility gains, where for all indexes VRP has greater economic significance at 

horizons of one month or less, while FH is more important at longer horizons. Internationally, this 

analysis of economic significance confirms the relevance of risk-neutral variables beyond the U.S case 

as well as heterogeneity in performance in terms of horizons. Our results underscore the importance of 

investigating model performance for specific countries and horizons of investment. 

5. – Conclusion 

Option data provide a forward-looking view of market risk anticipations (Christoffersen, Jacobs and 

                                                   
7
 The reported results on utility gains are consistent with the findings of Rapach and Zhou (2013) for the out-of-sample 

predictability on monthly excess returns of the S&P500 index. They find annualized utility gains of 0.24% to 2.47% for 

various models combining commonly used economic variables. 
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Chang, 2013; Cremers and Weinbaum, 2010). These data allow for daily estimations of forward-looking 

measures of risk, which we exploit in this paper. We show that these risk measures translate into 

significant index return predictability and out-of-sample performance. Our results extend previous 

evidence which ascribed a predictive role mainly to the U.S. S&P index (e.g. Pástor and Stambaugh, 

2009; Rapach, Strauss, and Zhou, 2013). Indeed, we show that each market’s own index options contain 

significant predictive information.  

We have three main findings. First, risk-neutral metrics matter beyond the variance risk premium. 

In fact, we find predictability at the international level for several horizons for all metrics considered 

(VRP, FH, RNS and RNK). Foster-Hart risk and risk-neutral skewness and kurtosis each contribute 

distinct information that is relevant for expected returns. In particular, FH risk explains future returns at 

longer horizons than does VRP. Out of sample, we find that a combination of VRP and FH risk fares 

well in several countries. The out-of-sample performance of the option-implied variables further 

underscores their economic significance. 

Second, we document predictability for several horizons that are important for asset managers 

and which were previously undocumented. In particular, VRP has predictive power at horizons less than 

one month as well as longer-run horizons, in addition to the previously reported quarterly horizon. Using 

the theoretical model in Bollerslev, Tauchen and Zhou (2009), this result suggests that investors care 

about the “volatility-of-volatility” at fairly short horizons. We also find that FH risk contributes more to 

return predictability at longer horizons. Under typical market conditions, it is intuitive that the risk of 

bankruptcy (large negative returns) would be associated with more distant forecasts and perceived as 

highly unlikely in the very short run.  

Third, the international evidence presented for several metrics is novel to the literature. We show 

that option markets for the DAX, FTSE, CAC and SMI indexes contain significant predictive power not 



 

23 

 

only as captured by VRP, but also in other option-implied variables. Our main results indeed hold for 

these international indexes, and also show cross-country variation in the performance of the models. 

Thus, finding relevant predictors internationally for stock returns is as challenging as ever, especially in 

the out-of-sample context.  

Appendix I: Obtaining the Risk-Neutral Distribution  

The first step toward obtaining moments of the RND is to construct a continuous volatility surface. 

Standard to the empirical option literature, options are excluded if they expire in five days or less or if 

they have implied volatility that is negative or above 100%. Only out-of-the-money options are used. For 

all remaining options, implied volatilities are recovered from the data source (OptionMetrics). This step 

provides, for each day, a surface of points in implied volatility-maturity-strike space. For a chosen 

maturity, the next steps are to convert the corresponding IVs to call prices using Black-Scholes, fit the 

points to a continuous form such as a spline, and apply Breeden and Litzenberger’s (1978) formula to 

obtain the risk-neutral distribution for a given date and maturity.  

Our objective is to construct time series of option-implied risk variables at a daily frequency, 

which requires a constant maturity for each daily observation. However, actual option prices have 

maturities that change each day. For this reason, the set of available points is transformed into a 

continuous surface. This is done using cubic spline interpolation, where each node is an actual 

observation. Afterward, a “slice” of this surface is taken at a maturity of one month and is corrected to 

avoid arbitrage possibilities, following Aït-Sahalia and Duarte (2003). This step corrects possible pricing 

errors introduced by interpolating without having to make strong parametric assumptions about the IV 

surface. 

Following Birru and Figlewski (2012), a fourth-degree smoothing spline is applied to the 

arbitrage-free interpolated IVs for a given maturity in order to prevent sharp spikes in the fitted density. 
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Once the smoothed IV curve is converted back to a call option price function using Black-Scholes, the 

empirical risk-neutral distribution function is obtained from Breeden and Litzenberger (1978).  Then, 

tails are fitted using a Generalized Extreme Value (GEV) distribution to each missing tail (Birru and 

Figlewski, 2012). This assumption is more appropriate than is assuming normality and ensures that, for 

example, risk-neutral variables computed on dates when the RND is missing a considerable part of its 

lower tail are closer to those computed on dates when these data are available. The Generalized Extreme 

Value (GEV) cumulative distribution function used for each missing tail is given by: 

    𝐹(𝑋) = exp [− (1 + 𝜉
𝑋−𝜇

𝜎
)

−
1

𝜉
]     (11) 

For each tail, the three parameters (𝜇, 𝜎, 𝜉) of the GEV distribution are fitted such that the total 

probability in the fitted tail is equal to the missing total probability in this tail of the empirical risk-

neutral distribution, and must connect with the empirical RND at the 2
nd 

and 5
th

 or 95
th

 and 98
th

 

percentiles. The objective function is to minimize the sum of the squared distances between the empirical 

RND and the GEV distribution on the domain between each pair of connection points. The GEV 

approach should then generate risk-neutral variables that better reflect the information contained in the 

options near the tails. It is documented in the literature that the normality assumption underestimates the 

prices of options in the distributional tails (Birru and Figlewski, 2012; Markose and Alenthorn, 2011). 

Moreover, this method addresses the bias in risk-neutral skewness discussed in Dennis and Mayhew 

(2002) linked to using an incomplete distribution.  

Appendix II: Bootstrap Procedure  

This bootstrap algorithm is based on the out-of-sample methodology presented in Clark and McCracken 

(2005) and Bollerslev et al. (2014) for possible GARCH effects. A 5-dimensional vector autoregressive 

(VAR) model is built with equations for the daily returns Y as well as the four explanatory variables X 
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(VRP, FH, RNS, RNK). Each possible combination of lags from 0 to 3 for each variable is estimated. 

The model is chosen for each country according to the Bayesian Information Criterion. For example, for 

the S&P500, the best model has two lags in the VRP equation, three for FH, three for RNS and two for 

RNK. The appropriate model for each index is further simplified by dropping the terms that are not 

significant. For parsimony, coefficients that have absolute values inferior to 1.6 times their standard 

errors are dropped. This is roughly equivalent to a 10% significance level. This model is estimated using 

the full sample of observations and the residuals are stored in order to construct the simulated series. The 

model used to generate the 1000 simulated series is restricted to impose the null hypothesis that variable 

X has no predictive power over future values of Y. In addition, we account for possible GARCH effects 

in the VRP and in the returns (see Bollerslev et al., 2014) by using a GARCH-DCC model to generate 

the simulated residuals. We use GARCH-DCC code provided by Sheppard (2013) to implement this 

part. The VRP and the index returns thus follow a GARCH(1,1). For return horizons longer than one 

day, the overlapping returns time series are constructed from this same simulated series of daily returns. 

This is done to ensure that the bootstrapped series have the same overlapping nature as do the actual 

observations. An alternative bootstrap technique was also implemented, with similar results. The 

alternative design is an unconstrained VAR, as developed in Clark and McCracken (2005). Given the 

available evidence regarding the VRP found in Bollerslev et al. (2014), for the sake of brevity we report 

results for the GARCH-DCC design only. 
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Table I: Descriptive statistics for the raw option data, January 2, 2000 -December 31, 2013. 

  S&P DAX CAC FTSE SMI 

Dates  

2000/01/02  

to 

 2013/12/31 

3356 obs. 

2002/01/02 

to 

2013/12/31 

2906 obs. 

2003/04/14 

to 

2013/12/31 

2523 obs. 

2002/01/02 

to 

2013/12/31 

2848 obs. 

2002/01/02 

to 

2013/12/31 

2872 obs. 

Number of options 

per day 
546.71 627.76 362.68 365.44 452.51 

Implied volatility 

 
.26 .28 .24 .23 .22 

Strike prices 1172.42 5447.45 4044.97 5140.31 6388.85 

Number of strikes 

per day 
118.16 103.54 57.70 77.98 83.87 

Time to maturity 

(days) 
202.59 358.45 449.53 233.18 335.56 

Number of 

maturities per day 
10.98 13.59 13.26 9.85 11.74 

This table reports, for each equity index, the mean of each of the variables relating to characteristics of the raw 

option data. The source of these data is Optionmetrics Ivy DB USA and Europe.   
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Table II: Descriptive statistics for the time series of option-implied moments 

 
SPX DAX SMI 

 

VRP FH RNS RNK VRP FH RNS RNK VRP FH RNS RNK 

Mean .01 1.64 -1.05 11.73 .00 1.82 -.71 7.75 .00 1.89 -0.28 13.40 

Std. Dev. .03 1.10 .96 11.67 .05 .98 .80 16.06 .03 1.07 1.26 35.69 

Autocorr(1) .85 .91 .46 .38 .93 .87 .34 .18 .91 .74 .41 .11 

P.Perron(10) .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 

Correlations          

VRP 1 .08 -.05 .06 1 .01 -.03 .02 1 .00 .10 .05 

FH  1 .31 -.22  1 .03 -.11  1 .03 -.03 

SK   1 -.51   1 .45   1 .68 

Kurt    1    1    1 

 
CAC  FTSE   

 

VRP FH  RNS  RNK VRP FH RNS RNK 

Mean .00 1.62 -0.74 10.27 .01 1.19 -1.10 14.98 

Std. Dev. .04 .99 .99 13.09 .03 1.16 1.61 23.51 

Autocorr(1) .92 .81 .26 .34 .90 .88 .19 0.32 

P.Perron(10) .00 .00 .00 .00 .00 .00 .00 .00 

Correlations      

VRP 1 .08 .00 .09 1 .02 -.11 .14 

FH  1 .12 -.21  1 .21 -.29 

SK   1 -.19   1 -.46 

Kurt    1    1 
 

This table reports descriptive statistics for the daily time series of risk variables obtained from the risk-neutral 
distribution implied by options data on each of the equity indexes studied in the paper. VRP is the variance risk 
premium defined as the difference between model-free risk-neutral variance and realized variance. FH is the 
Foster-Hart generalized measure of riskiness taken on the risk-neutral distribution each day in the sample. RNS 
and RNK are the skewness and kurtosis of the risk-neutral distribution using GEV tails. Autocorr(1) is the 
autocorrelation of the series at lag 1 and P.Perron(10) p-value is the p-value of a Phillips–Perron unit-root test 

with 10 lags. 
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Table III: This table (panels A through E) reports test statistics for the out-of-sample index return forecasting 
performance of unrestricted models (first column) compared to a (nested) restricted model (second column). VRP 
is variance risk premium; FH is Foster-Hart risk; RNS is risk-neutral skewness; and RNK is risk-neutral kurtosis. 

MDM is the modified Diebold-Mariano test statistic on the squared prediction error. MSEF is a test statistic of 
forecast accuracy. ENCF is a test statistic of forecast encompassing. MDM, MSEF and ENCF are compared to 
1000 bootstrapped values. Test statistics that are positive indicate that the unrestricted model performs better than 
does the restricted version. When the test statistic is significantly positive, the asterisks (*) correspond to the usual 
significance levels (*:10%, **:5%, ***:1%). When the unrestricted model underperforms the restricted model, 

Roos
2  is negative and omitted from the table. UG is the average annualized utility gain for a mean-variance investor 

with a relative risk aversion of 𝛾 = 3 using the unrestricted model, compared to using the restricted model. UG is 

omitted when it is negative.  
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Table III: Out-of-Sample Performance 
Panel A: S&P 500 

No. Unrest. Rest. 
Test 

Stat. 

Return horizon (in business days) 

1 2 5 20 50 100 250 

1 VRP 
CST 

only 

MDM 1.69** 1.76** 2.31*** 2.12*** 1.66** 1.45* 1.14 

ENCF 10.84*** 12.93*** 19.67*** 34.86*** 46.19*** 38.04** 33.79** 

MSEF 16.30*** 19.16*** 30.38*** 55.12*** 67.30*** 60.31*** 59.44*** 

R
2

oos 1.6% 1.9% 2.9% 5.2% 6.4% 5.8% 6.0% 

UG 0.6% 1.3% 1.6% 1.0% 1.1% 0.3% 0.4% 

2 FH 
CST 

only 

MDM -1.81 -1.99 0.95* 2.31*** 2.28*** 1.10* 4.90*** 

ENCF -1.01 -1.71 1.24 21.91** 48.18** 57.34** 210.77*** 

MSEF -2.25 -3.65 2.19 38.26** 84.33** 88.19** 355.35*** 

R
2

oos - - 0.2% 3.7% 7.8% 8.3% 27.6% 

UG - - 0.6% 1.9% 1.6% 1.4% 1.6% 

3 RNS 
CST 

only 

MDM 1.51** 1.67** -1.79 2.29*** -1.23 0.02 1.41* 

ENCF 0.38 0.50 -0.31 3.22 -2.57 0.31 30.18*** 

MSEF 0.68 0.93 -0.64 6.03* -5.24 0.22 57.96*** 

R
2

oos 0.1% 0.1% - 0.6% - 0.0% 5.9% 

UG 0.5% 0.3% - 0.3% - 0.2% 0.5% 

4 RNK 
CST 

only 

MDM -1.86 -1.68 -1.67 -3.50 -2.49 -1.75 -1.39 

ENCF -0.61 -0.81 -1.46 -4.61 -9.24 -15.15 -12.42 

MSEF -1.37 -1.83 -3.31 -9.86 -19.47 -31.27 -25.46 

R
2

oos - - - - - - - 

UG - - - - - - - 

5 All 
CST 

only 

MDM 1.42** 1.29** 2.04*** 2.20*** 1.90** 1.56** 2.77** 

ENCF 9.94*** 10.81*** 18.86*** 53.39*** 83.98*** 84.89** 242.55*** 

MSEF 13.17*** 13.61*** 27.15*** 77.91*** 121.50*** 117.29** 392.02*** 

R
2
 1.3% 1.3% 2.6% 7.2% 10.9% 10.7% 29.6% 

UG 2.1% 1.6% 1.6% 2.5% 1.9% 1.3% 1.8% 

6 All 

All 

ex. 

VRP 

MDM 1.76** 1.77*** 2.15*** 1.77** 1.23* 1.00 1.01 

ENCF 11.05*** 12.52*** 17.55*** 28.01*** 32.93** 27.08** 17.44* 

MSEF 16.83*** 18.74*** 26.80*** 43.02*** 43.95** 41.32** 29.09* 

R
2

oos 1.6% 1.8% 2.6% 4.1% 4.2% 4.1% 3.0% 

UG 1.8% 1.6% 1.1% 0.8% 0.4% - 0.1% 

7 All 

All 

ex. 

FH 

MDM -0.95 -1.28 -1.27 1.59** 2.16*** 1.09* 9.78*** 

ENCF -0.69 -1.90 -0.74 11.13* 35.38** 46.14** 168.47*** 

MSEF -2.33 -4.90 -1.54 19.35* 62.46** 71.78** 277.50*** 

R
2

oos - - - 1.9% 5.9% 6.8% 22.9% 

UG 0.4% - - 1.0% 0.8% 1.0% 1.3% 

8 All 

All 

ex. 

RNS 

MDM -0.03 -0.02 -0.07 0.35 -0.98 -0.62 0.04 

ENCF 0.76 0.84 0.23 2.50 -1.80 -2.74 5.99** 

MSEF -0.08 -0.07 -0.15 1.90 -4.72 -8.28 1.36 

R
2

oos - - - 0.2% - - 0.1% 

UG 1.5% 0.6% 0.3% 0.1% - - 0.0% 

9 All 

All 

ex. 

RNK 

MDM -0.94 -0.75 -0.45 -0.55 -0.35 -0.32 -0.50 

ENCF -0.33 -0.26 -0.08 0.23 0.49 0.00 1.98 

MSEF -1.38 -1.37 -1.27 -4.28 -4.03 -8.26 -11.48 

R
2

oos - - - - - - - 

UG 0.5% 0.1% 0.1% - 0.1% 0.1% 0.0% 
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Table III: Out-of-Sample Performance 
Panel B: DAX 

No. Unrest. Rest. 
Test 

Stat. 

Return horizon (in business days) 

1 2 5 20 50 100 250 

1 VRP 
CST 

only 

MDM 1.15** 1.39** 1.33** 0.11 -1.33 -0.76 3.39** 

ENCF 1.74** 4.41** 5.94** 2.00 -8.33 -8.99 2.02 

MSEF 2.92** 7.63*** 10.17** 0.83 -22.45 -21.60 3.04 

R
2

oos 0.3% 0.9% 1.2% 0.1% - - 0.4% 

UG 0.7% 1.2% 0.9% - - - 0.0% 

2 FH 
CST 

only 

MDM -0.40 -1.39 -0.37 0.55 0.75 0.80 0.47 

ENCF -0.08 -0.74 -0.25 9.25 38.68** 92.58*** 176.29*** 

MSEF -0.38 -1.63 -1.33 10.58 38.98** 76.49** 179.45*** 

R
2

oos - - - 1.2% 4.4% 8.3% 18.4% 

UG 0.7% - 0.5% 1.2% 1.4% 1.1% 1.1% 

3 RNS 
CST 

only 

MDM 0.04 1.52** 1.37** 1.24** 0.22 0.29 0.62 

ENCF 0.02 0.33 0.85 2.23* 0.39 0.85 0.92 

MSEF 0.01 0.58 1.48 3.72** 0.47 1.29 1.62 

R
2

oos 0.0% 0.1% 0.2% 0.4% 0.1% 0.2% 0.2% 

UG 0.2% 0.5% 0.4% 0.2% 0.1% 0.1% 0.0% 

4 RNK 
CST 

only 

MDM -1.25 -0.98 -1.35 -2.48 -0.18 -0.31 0.33 

ENCF -0.22 -0.15 -0.29 -0.45 0.12 0.32 0.52 

MSEF -0.48 -0.35 -1.70 -0.98 -0.16 -0.97 1.02 

R
2

oos - - - - - - 0.1% 

UG - - - - 0.0% - 0.0% 

5 All 
CST 

only 

MDM 0.89** 1.03** 0.96** 0.75* 0.35 0.58 0.49 

ENCF 1.55 3.56* 5.51* 12.61 28.08* 80.39*** 187.38*** 

MSEF 2.33** 5.67** 7.34* 14.06* 16.67 56.06** 191.61*** 

R
2

oos 0.3% 0.6% 0.8% 1.6% 1.9% 6.2% 19.4% 

UG 1.0% 1.1% 1.0% 0.8% 1.0% 1.1% 1.1% 

6 All 

All 

ex. 

VRP 

MDM 1.20** 1.39** 1.34** 0.26 -1.53 -0.91 1.12 

ENCF 1.84** 4.52*** 6.10** 2.64 -6.83 -6.79 4.56 

MSEF 3.10** 7.80*** 10.49** 2.12 -19.01 -16.55 7.93 

R
2

oos 0.4% 0.9% 1.2% 0.2% - - 1.0% 

UG 0.2% 1.0% 0.5% - - - 0.0% 

7 All 

All 

ex. 

FH 

MDM -0.68 -1.63 -0.51 0.46 0.75 0.77 0.48 

ENCF -0.19 -0.77 -0.49 7.74 36.90** 90.51*** 180.89*** 

MSEF -0.53 -1.68 -1.80 8.30 37.95** 75.18** 182.39*** 

R
2

oos - - - 0.9% 4.2% 8.2% 18.6% 

UG 0.0% - 0.0% 0.8% 1.2% 1.2% 1.1% 

8 All 

All 

ex. 

RNS 

MDM 1.10** -0.07 0.31 1.32** -0.78 -0.15 0.80 

ENCF 0.14 0.00 0.13 2.02* -0.70 -0.14 1.34 

MSEF 0.26 -0.02 0.20 3.64* -1.72 -0.67 2.38 

R
2

oos 0.0% - 0.0% 0.4% - - 0.3% 

UG 0.3% 0.2% - - 0.0% 0.0% 0.0% 

9 All 

All 

ex. 

RNK 

MDM -0.93 -1.97 -2.08 -2.59 -1.31 -1.86 -1.35 

ENCF -0.11 -0.43 -1.05 -0.79 -0.38 -1.98 -1.11 

MSEF -0.25 -0.93 -2.90 -1.63 -0.88 -4.03 -2.26 

R
2

oos - - - - - - - 

UG 0.1% - - - - - - 
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Table III: Out-of-Sample Performance 
Panel C: SMI 

No. Unrest. Rest. 
Test 

Stat. 

Return horizon (in business days) 

1 2 5 20 50 100 250 

1 VRP 
CST 

only 

MDM -0.17 0.16 0.26 -0.38 -0.56 -0.57 -2.32 

ENCF 0.62 2.69** 4.46* 0.15 -2.76 -8.43 -5.77 

MSEF -0.96 1.64* 2.74 -6.82 -16.11 -28.71 -13.91 

R
2

oos - 0.2% 0.3% - - - - 

UG - - 0.2% 0.1% 0.3% 0.0% - 

2 FH 
CST 

only 

MDM -0.44 -0.98 -0.94 -0.79 -0.69 -0.67 0.19 

ENCF 0.81* -0.44 -0.65 -3.30 4.00 5.56 70.56*** 

MSEF -1.60 -4.74 -10.04 -27.32 -31.87 -40.56 62.85*** 

R
2

oos - - - - - - 7.4% 

UG - - - - 0.0% 0.3% 1.0% 

3 RNS 
CST 

only 

MDM -0.46 0.00 -0.60 -0.59 -1.96 -0.50 -0.05 

ENCF -0.04 0.01 -0.14 -0.79 -3.25 -3.00 2.00 

MSEF -0.09 0.00 -0.32 -2.02 -6.73 -9.22 -2.13 

R
2

oos - 0.0% - - - - - 

UG - 0.0% - 0.0% - - - 

4 RNK 
CST 

only 

MDM -0.24 -0.31 -0.13 -0.05 -0.52 0.04 -0.42 

ENCF -0.01 -0.01 -0.01 -0.01 -0.30 0.16 -0.13 

MSEF -0.01 -0.02 -0.01 -0.03 -0.60 0.21 -0.39 

R
2

oos - - - - - 0.0% - 

UG - - 0.0% 0.0% - 0.0% - 

5 All 
CST 

only 

MDM -0.49 -0.35 -0.56 -1.01 -1.06 -1.14 -0.07 

ENCF 1.28 2.17 3.51 -4.83 -4.20 -12.95 50.84** 

MSEF -3.19 -3.85 -7.87 -42.11 -61.68 -104.09 -26.49 

R
2

oos - - - - - - - 

UG - - - - - 0.1% 0.9% 

6 All 

All 

ex. 

VRP 

MDM -0.23 0.13 0.27 -0.50 -0.78 -0.83 -7.93 

ENCF 0.40 2.33* 4.33* -0.81 -3.98 -9.84 -7.31 

MSEF -1.21 1.27 2.91 -7.59 -16.90 -28.33 -16.12 

R
2

oos - 0.1% 0.3% - - - - 

UG 0.5% 0.7% 0.8% 0.2% 0.1% - - 

7 All 

All 

ex. 

FH 

MDM -0.64 -1.22 -1.07 -0.96 -0.81 -1.11 -0.03 

ENCF 0.39 -1.04 -1.34 -5.90 1.04 -3.35 40.71*** 

MSEF -2.24 -5.64 -10.80 -32.06 -37.55 -65.19 -10.63 

R
2

oos - - - - - - - 

UG 0.6% 0.1% - - - 0.2% 0.9% 

8 All 

All 

ex. 

RNS 

MDM 0.31 0.43 0.81* -1.52 -1.53 -2.32 -0.71 

ENCF 0.08 0.14 0.70 -2.39 -4.43 -13.10 -19.91 

MSEF 0.12 0.23 1.13 -5.20 -9.55 -30.22 -55.39 

R
2

oos 0.0% 0.0% 0.1% - - - - 

UG - - - - - - - 

9 All 

All 

ex. 

RNK 

MDM -0.10 0.28 0.53 -0.79 -1.58 -2.68 -1.05 

ENCF 0.00 0.03 0.13 -0.34 -1.43 -2.48 -8.00 

MSEF -0.01 0.06 0.23 -0.71 -2.95 -5.09 -16.93 

R
2

oos - 0.0% 0.0% - - - - 

UG - - 0.0% - - - - 
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Table III: Out-of-Sample Performance 
Panel D: CAC 

No. Unrest. Rest. 
Test 

Stat. 

Return horizon (in business days) 

1 2 5 20 50 100 250 

1 VRP 
CST 

only 

MDM 1.81** 1.86** 2.12*** 1.01* -0.17 -0.12 -1.87 

ENCF 2.86** 5.10** 7.69** 10.20 0.82 1.93 -3.44 

MSEF 4.90*** 9.02*** 13.54** 15.38* -3.66 -5.25 -7.32 

R
2

oos 0.6% 1.2% 1.8% 2.0% - - - 

UG 2.0% 2.1% 2.2% 1.2% 0.6% 0.2% 0.0% 

2 FH 
CST 

only 

MDM 0.97** 0.46 0.52 1.24** 1.68** 1.43* 0.48 

ENCF 0.79* 0.95 3.33* 34.72*** 72.30*** 184.58*** 282.40*** 

MSEF 1.17** 1.07 3.45* 44.06*** 100.57*** 233.22*** 326.55*** 

R
2

oos 0.2% 0.1% 0.5% 5.5% 11.9% 24.3% 32.4% 

UG 2.4% 2.1% 2.6% 4.7% 4.2% 3.7% 1.5% 

3 RNS 
CST 

only 

MDM 0.18 0.43 1.23** 1.43** 3.51*** 2.12** 0.90 

ENCF 0.20 0.72 2.25** 6.18*** 14.84*** 16.36*** 31.93*** 

MSEF 0.14 0.72 3.45** 10.54*** 25.67*** 29.54*** 54.09*** 

R
2

oos 0.0% 0.1% 0.5% 1.4% 3.3% 3.9% 7.3% 

UG 1.4% 1.5% 1.6% 1.1% 0.7% 0.1% 0.0% 

4 RNK 
CST 

only 

MDM 0.99** 1.27** -0.73 -1.16 -1.49 -1.89 0.17 

ENCF 0.26 0.61 -0.22 -2.01 -4.75 -8.50 3.57* 

MSEF 0.42 1.00 -0.53 -4.42 -10.49 -19.31 2.63 

R
2

oos 0.1% 0.1% - - - - 0.4% 

UG 0.6% 1.0% - - - - - 

5 All 
CST 

only 

MDM 1.99*** 2.02*** 1.74*** 1.31** 1.36** 1.15* 0.54 

ENCF 3.69** 6.65** 11.30** 43.46*** 71.73*** 177.79*** 293.62*** 

MSEF 6.01*** 10.91*** 16.63*** 54.34*** 89.57*** 209.88*** 364.74*** 

R
2

oos 0.8% 1.4% 2.2% 6.7% 10.8% 22.4% 34.8% 

UG 4.1% 3.8% 3.5% 4.5% 4.1% 3.5% 1.4% 

6 All 

All 

ex. 

VRP 

MDM 1.77** 1.82** 1.95** 0.52 -0.75 -0.82 -3.74 

ENCF 2.73** 5.02** 6.76* 6.01 -4.98 -10.70 -4.28 

MSEF 4.70** 8.90*** 11.92** 7.84 -14.43 -28.77 -9.01 

R
2

oos 0.6% 1.2% 1.6% 1.0% - - - 

UG 1.4% 1.2% 0.6% - - - - 

7 All 

All 

ex. 

FH 

MDM 0.19 -0.45 0.00 0.97* 1.45** 1.47** 0.54 

ENCF 0.12 -0.15 0.94 26.13*** 55.33*** 158.39*** 271.33*** 

MSEF 0.12 -0.54 0.00 31.26** 75.55*** 198.93*** 316.36*** 

R
2

oos 0.0% - 0.0% 4.0% 9.2% 21.5% 31.7% 

UG - - 0.1% 2.8% 3.0% 3.3% 1.5% 

8 All 

All 

ex. 

RNS 

MDM 0.01 0.38 1.12** 1.10** 1.32* 1.17* 0.65 

ENCF 0.04 0.32 1.22 2.47* 6.94*** 9.18*** 13.45*** 

MSEF 0.01 0.37 1.94* 4.45** 11.80*** 16.53*** 17.52*** 

R
2

oos 0.0% 0.0% 0.3% 0.6% 1.6% 2.2% 2.5% 

UG 0.8% 0.5% 0.4% 0.1% 0.2% 0.1% - 

9 All 

All 

ex. 

RNK 

MDM 1.22** 1.55** -0.51 -0.26 -0.26 0.71 0.96 

ENCF 0.45 0.98 -0.14 -0.23 -0.42 4.50** 18.70*** 

MSEF 0.73* 1.59* -0.35 -0.84 -1.78 5.35** 29.99*** 

R
2

oos 0.1% 0.2% - - - 0.7% 4.2% 

UG 1.3% 0.9% - - - - - 
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Table III: Out-of-Sample Performance 
Panel E : FTSE 

No. Unrest. Rest. 
Test 

Stat. 

Return horizon (in business days) 

1 2 5 20 50 100 250 

1 

 
VRP 

CST 

only 

MDM 1.30* 1.61** 2.34*** 1.45** 0.60 0.52 0.71 

ENCF 1.66* 3.17* 3.69 8.86 5.13 9.58 21.39* 

MSEF 2.88** 5.75** 6.92* 14.52* 5.63 8.87 35.88* 

R
2

oos 0.3% 0.7% 0.8% 1.7% 0.7% 1.1% 4.4% 

UG 0.3% 0.5% 0.7% 0.4% 0.2% 0.1% 0.1% 

2 FH 
CST 

only 

MDM -0.64 -0.56 -0.64 -0.40 0.05 -0.10 -0.76 

ENCF -0.14 -0.30 -1.03 2.35 25.18* 72.49** -65.66 

MSEF -0.36 -0.99 -4.54 -12.59 4.10 -18.95 -491.30 

R
2

oos - - - - 0.5% - - 

UG - - - 0.2% 0.6% 0.6% 0.9% 

3 RNS 
CST 

only 

MDM -1.26 -0.78 0.40 -0.20 -0.15 0.19 -2.18 

ENCF -0.16 -0.22 0.23 -0.05 0.10 0.36 -16.55 

MSEF -0.35 -0.54 0.34 -0.33 -0.23 0.15 -37.85 

R
2

oos - - 0.0% - - 0.0% - 

UG - 0.0% 0.1% - 0.0% - - 

4 RNK 
CST 

only 

MDM -0.76 0.03 -0.71 -0.79 -0.61 -0.47 -0.82 

ENCF -0.04 0.00 -0.15 -0.75 -2.12 -3.80 -37.92 

MSEF -0.09 0.00 -0.32 -1.60 -4.66 -9.53 -85.72 

R
2

oos - 0.0% - - - - - 

UG - 0.1% - - - - - 

5 All 
CST 

only 

MDM 0.90* 0.96** 0.19 -0.10 -0.01 -0.12 -0.76 

ENCF 1.34 2.58 2.50 9.46 26.75 82.20** -68.32 

MSEF 2.10* 4.00* 1.53 -3.68 -0.81 -24.67 -482.62 

R
2

oos 0.2% 0.5% 0.2% - - - - 

UG 0.2% 0.2% - 0.3% 0.5% 0.7% 0.9% 

6 All 

All 

ex. 

VRP 

MDM 1.34* 1.63** 2.32*** 1.17** -0.09 -0.92 -0.60 

ENCF 1.68* 3.23* 3.43 7.13 1.29 -3.21 -1.79 

MSEF 2.94** 5.89** 6.45* 11.75* -0.58 -13.20 -6.27 

R
2

oos 0.3% 0.7% 0.8% 1.4% - - - 

UG 0.6% 0.6% 0.7% 0.2% - - - 

7 All 

All 

ex. 

FH 

MDM -1.42 -1.07 -0.84 -0.54 -0.02 -0.14 -0.73 

ENCF -0.28 -0.63 -1.77 -0.19 22.92* 77.25** -50.71 

MSEF -0.60 -1.49 -5.79 -16.86 -1.90 -26.55 -444.21 

R
2

oos - - - - - - - 

UG - - - 0.0% 0.5% 0.8% 1.3% 

8 All 

All 

ex. 

RNS 

MDM -1.08 -0.86 0.42 0.18 -0.41 1.03 -0.60 

ENCF -0.17 -0.29 0.33 0.38 -0.13 0.80 -0.70 

MSEF -0.36 -0.71 0.47 0.37 -0.79 1.30 -2.69 

R
2

oos - - 0.1% 0.0% - 0.2% - 

UG - - 0.1% - 0.0% 0.0% - 

9 All 

All 

ex. 

RNK 

MDM 0.33 0.22 -0.66 -0.77 -0.39 0.85 -0.60 

ENCF 0.03 0.01 -0.20 -0.62 -0.04 8.43*** -3.24 

MSEF 0.05 0.02 -0.50 -1.83 -1.89 11.49*** -9.42 

R
2

oos 0.0% 0.0% - - - 1.4% - 

UG - 0.0% - - 0.0% 0.1% - 
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Figure 1: Predictive regressions using option-implied risk variables  
The following panels show results, for each equity index, of two-sided individual significance tests for 

the coefficients of regression (1) for different return horizons h measured in days. The results are 

shown as Newey-West corrected t-statistics, but the critical values for the usual levels of significance 

are computed from 10,000 bootstrapped series and plotted as gray lines (10%: dots, 5%: dash-dot, 1%: 

dashes). The null hypothesis is that a coefficient is equal to zero. The alternative hypothesis is that the 

coefficient is not equal to zero, meaning that this variable has significant explanatory power over 

future returns. VRP is the variance risk premium defined as the difference between model-free risk-

neutral variance and realized variance. FH is the Foster-Hart generalized measure of riskiness taken on 

the risk-neutral distribution each day in the sample. RNSkew and RNKurt are the skewness and 

kurtosis of the risk-neutral distribution using GEV tails. The horizontal axis is in log scale.  
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Panel A: S&P 500 index
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Panel B: DAX 
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Panel C: SMI 

 
 

 

 

 



 

43 

 

 

 

Panel D: CAC
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Panel E: FTSE 
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Figure 2: Adjusted R
2
 for predictive regressions over several horizons 

 

This figure (panels A through E) reports the adjusted R
2
 for the regression described in 

Equation (4) for future returns of each market index at different horizons h (measured in 

days). The Adjusted R
2
 are compared to the percentiles of those from 10,000 

bootstrapped series that are plotted as gray lines (90%: dots, 95%: dash-dot, 99%: 

dashes). The horizontal axis is in log scale.  
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Panel E- FTSE 

 
 




