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We study peer effects on the formation of beliefs regarding college participation. We present a 
structural model of learning in friendship networks. We show that the model is identified and we 
present a Bayesian estimation procedure. We estimate the model using data on teenagersʼ beliefs 
regarding college participation, controlling for preferences and academic achievement. We find 
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1 Introduction

It is not news that teenagers often have biased views about the world. Indeed

students’ subjective expectations affect many of their choices, ranging from career

choices (e.g. Ashby and Schoon, 2010) to risky sexual behaviour (e.g. Sipsma,

Ickovics, Lin, and Kershaw, 2015). Typical predictors of teenagers’ subjective

biases include gender and the characteristics of their parents, such as parental

education level (e.g. Attanasio and Kauffman, 2010).

In this paper, we study the role of friendship in explaining teenagers’ subjective

beliefs regarding college participation. We present a structural model of social

learning in networks that we estimate using data from middle- and high-school

teenagers in the US. A large set of observable variables allows us to measure the

impact of beliefs, controlling for (stated) preferences, academic achievement, and

many other relevant socio-economic characteristics.

We find that the average belief of a student’s peers accounts for 12% of the

belief updating process, while the remaining percentage is due to individual char-

acteristics. We also find substantial heterogeneity among schools and individuals.

In particular, we find substantial unobserved individual heterogeneity: the impor-

tance of peers’ beliefs on the updating process ranges from 8% to 73%. Impor-

tantly, differences in the magnitude of peer effect cannot be well predicted using

observable characteristics; an observation that has important policy implications.

In particular, without accounting for unobserved heterogeneity, network-targeted

policies such as key-players analysis (Ballester, Calvó-Armengol, and Zenou, 2006)

are likely ineffective.

We present a model where, at each period, individuals update their beliefs

according to their friends’ average beliefs (e.g. DeGroot, 1974) and also according

to their own particular characteristics (e.g. age, gender, parental education, etc.).

Accordingly, the steady-state distribution of beliefs is affected by the shape of the

social network, but it is not consensual (e.g. Friedkin and Johnsen, 1990).

2



We estimate the model using data related to students’ beliefs regarding college

participation. Specifically, each student is asked: “On a scale of 1 to 5, where 1 is

low and 5 is high, how likely is it that you will go to college?”.1 Since beliefs are

only measured using an ordinal scale, we develop a multivariate ordered probit

model. We show that all of the model’s parameters are identified and estimate

the model using a Bayesian approach, which allows for greater flexibility regarding

the heterogeneity of social learning.

Estimating the model over the entire sample (16 schools), we find an average

peer effect on beliefs of 12%. We also separately focus on the two largest schools

in our sample and find effects of 13% and 25%. In addition, we study this het-

erogeneity in greater depth by then estimating a latent class model. Specifically,

students are sorted into two (unobserved) groups according to the strength of peer

effect on their beliefs. Estimating the model for the largest school in our sam-

ple (the school having an average effect of 13%), we observe marked differences

between the two latent classes; peer influence on beliefs are respectively 8% and

73%.

To study the source of the students’ heterogeneity, we try to find predictors

for the probability of belonging to either class. We find that females and students

having lower beliefs are slightly more likely to belong to the low-influence group.

Overall, however, the predictive power is very weak. This is of great importance

for policy making.

Indeed, one of the key implications of the literature on peer effects in social

networks is that it allows the policy maker to target the individuals that would

generate the largest spillovers (i.e. the key player(s), see for example Ballester

et al. (2006) and Zenou (2016)). Importantly, however, this literature mostly

assumes that peer effects are homogeneous.

Since we observe (1) a high variation in peer influence among individuals, and
1The data also includes the students’ preferences for college. See Section 3 for additional

details.
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that (2) this heterogeneity cannot be predicted using observables, targeted policies

will be likely ineffective. That is, the most central individual in the network is not

necessarily the key player when accounting for unobserved heterogeneity. Since

this heterogeneity cannot be approximated by observable characteristics, and since

uniform policies are relatively cheap (Hoxby and Turner, 2013), policies targeted

at the level of the school are perhaps more sensible.

1.1 Related Literature

We contribute to the literature on peer effects on students’ outcomes (e.g. Sac-

erdote et al., 2011; Black, Devereux, and Salvanes, 2013; Burke and Sass, 2013;

Carrell, Fullerton, and West, 2009; Hatami, Kazemi, and Mehrabi, 2015; Zabel,

2008). As discussed by Manski (2000), interactions can affect constraints, prefer-

ences, or expectations. We estimate the impact of expectation interactions, and

we show that they have a significant and heterogeneous impact on the steady-state

beliefs regarding college participation.

We also contribute to the literature on peer effects in networks (see Boucher

and Fortin, 2016; de Paula, 2017, for recent reviews). Our structural model is

closely linked to the spatial autoregressive model. Although identification condi-

tions are well known (e.g. Bramoullé, Djebbari, and Fortin, 2009; Lee, Liu, and

Lin, 2010), few papers study the implications of such models when the outcome

variable is ordered.2 We present a Bayesian estimation procedure and show that

the identification of the model is not impaired by the ordered nature of the out-

come variable.

Finally, we also contribute to recent literature discussing the heterogeneity of

peer effects. While some papers have assessed heterogeneous peer effects based

on observable characteristics (e.g. Dieye, Fortin et al., 2017; Arduini, Patacchini,

and Rainone, 2016), few papers have studied unobserved heterogeneity on peer
2An exception being Liu and Zhou (2017).
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effects. One important exception is Peng (2016) who presented a model where the

weight of the network is estimated using a LASSO technique. In our paper, the

individuals belong to latent classes, grouped according to the magnitude of their

peer effects. We find substantial differences among individuals’ reliance on peers

for belief formation.

The remainder of the paper is organized as follows. In Section 2, we introduce

the model of social learning in networks, and we discuss the identification condi-

tions and the estimation procedure. In Section 3, we present the data, while in

the following Section 4, we present our results. Section 5 provides our conclusions.

2 Model

We consider a school of n ≥ 1 students. Each student i ∈ N is characterized by

a set of observable socio-economic variables xi. Each student i also forms beliefs

p∗i ∈ R regarding the likelihood that they will go to college.

We assume that beliefs are formed as follows:

p∗i = xiβ + εi (1)

where εi ∼ N(0, 1). A similar specification is used for instance in Bellemare,

Kröger, and Van Soest (2008). The variables in xi are likely to influence the

relative optimism (or pessimism) of the student regarding the likelihood that

they will go to college, e.g. parents’ education, college preferences, racial group,

gender, etc.

Given that students at the same school are likely to discuss their beliefs, we

allow the students’ beliefs to evolve as a function of their peers’ beliefs. Students

who have no peers are called isolated and their beliefs are simply given by (1).

For non-isolated students, we assume that the beliefs are updated according a
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modified DeGroot learning process (DeGroot, 1974):

p
∗(t)
i =

α

ni

∑
j∈Ni

p
∗(t−1)
j + (1− α)xiβ + εi (2)

where Ni ⊂ N represent the set i’s peers, i.e. the set of students from which i

learns. We set i /∈ Ni, ni = |Ni|, and we assume that α ∈ (0, 1).

At any period t, a non-isolated student’s belief is given by a convex combi-

nation between their type xiβ and the average beliefs of their peers. Note that

here, the fixed term (1 − α)xiβ + εi influences beliefs at every period t, which

preserves the heterogeneity of beliefs at the steady state (see Equation (3) below).

A similar approach is followed by Friedkin and Johnsen (1990).

Although naive, DeGroot learning processes are widely used in the context of

belief updating in social networks (e.g. Golub and Jackson, 2010, 2012).3 In par-

ticular, Chandrasekhar, Larreguy, and Xandri (2015) show, in a field experiment

setting, that individuals’ beliefs are better described by DeGroot learning relative

to Bayesian learning.

Note that we can write the learning process in matrix form for all students at

time t as:

p∗(t) = αTp∗(t−1) + BαXβ + ε

where Bα is a diagonal matrix taking the value Bii = (1−α) if the student is not

isolated, and Bii = 1 otherwise. The matrix T summarizes the learning network

and is such that Tij = 1/ni if i learns from j’s beliefs (i.e. j ∈ Ni), and Tij = 0

otherwise.

Importantly, note that T is generally not block-diagonal; while isolated stu-

dents do not learn from other students’ beliefs, a non-isolated student may learn

from an isolated students’ beliefs.

For the remainder of this paper, we will assume that the data is generated
3See Golub and Sadler (2016) for a review of the learning approaches in a social network.
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from the steady state of this learning process. (See the Appendix for a proof of

convergence and of the invertibility of [I− αT].):

p∗ = [I− αT]−1BαXβ + [I− αT]−1ε (3)

A particularity of the model is that p∗i is not observed. We assume that each

student is asked to assess the likelihood that they will go to college using an

ordinal scale. For student i, we therefore observe:

pi =



1 if p∗i ≤ γ1

2 if γ1 < p∗i ≤ γ2

...

K − 1 if γK−2 < p∗i ≤ γK−1

K if p∗i > γK−1

where we normalize γ1 = 0, and where γ = [γ2, ..., γK−1]′ must be estimated.

In the next section, we discuss the identification of α and β. We discuss the

estimation procedure in Section 2.2.

2.1 Identification

If we were to observe p∗, identification of α and β would follow directly from the

literature (e.g. Bramoullé et al. (2009)).4 Here, however, we only observe the

ordinal scale p. The likelihood of p is therefore given by a multivariate ordered

probit model.

We show that under the typical restrictions where the variances of εi are

normalized to 1, and γ1 is normalized to 0, the partial observability of p∗ does

not affect the identification of α and β. To understand this reasoning, one can

assume that there are no isolated individuals and that individuals interact in pairs
4Note that in that case, the normalization of the variance of εi would not be required.
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(A general treatment is provided in the Appendix).

Under these simplifying assumptions, the model reduces to a simple bivariate

ordered probit model:

p∗i = αp∗j + (1− α)xiβ + εi

p∗j = αp∗i + (1− α)xjβ + εj

It can also be rewritten as:

p∗i =

√
1 + α2

1− α2

[
(1− α)√

1 + α2
xiβ +

α(1− α)√
1 + α2

xjβ + νi

]
p∗j =

√
1 + α2

1− α2

[
(1− α)√

1 + α2
xjβ +

α(1− α)√
1 + α2

xiβ + νj

]

where

 νi

νj

 ∼ N

 0

0

 ,
 1 2α

2α 1


Since we do not observe the latent variables p∗i and p∗j , this is observationally

equivalent to:5.

p∗i =
(1− α)√

1 + α2
xiβ +

α(1− α)√
1 + α2

xjβ + νi

p∗j =
(1− α)√

1 + α2
xjβ +

α(1− α)√
1 + α2

xiβ + νj

Thus, α and β are identified. In particular, α is directly identified from the

variance of ν (e.g. Graham (2008), Rose (2017)) and also from the ratio of the

coefficients for xi and xj (e.g. Moffitt et al. (2001), Bramoullé et al. (2009)).

Notably, this implies that the identification of α does not follow from the normal-

ization of the variance of νi.6

5This is due to the fact that we can rescale γ
6As usual, β is only scale-identified, i.e. its identification depends on the normalization of

the variance of νi.
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2.2 Estimation

The estimation of a multinomial ordered probit model is challenging as, among

other things, the maximum likelihood estimator cannot be written in close form.

In this paper, we adopt a Bayesian approach, although a classical approach could

also be used.7

One advantage of the Bayesian approach is that the estimation can be per-

formed separately for different schools, allowing for the study of heterogeneity

among schools (see Section 4). In a classical setting, the dependence between ob-

servations often requires that the estimation be performed for many independent

populations (e.g. schools) to obtain consistent estimates.8 This is important since

we find large heterogenous effects between schools (see Section 4.2) and within

schools (see Section 4.3).

The model parameters are estimated via an Markov chain Monte Carlo (MCMC)

algorithm. Specifically, we follow Albert and Chib (1993) and augment the tar-

geted posterior distributions with two random variables, p∗ and γ (see Tanner

and Wong (1987) for details). We use standard prior distributions that are set as

α̃ ≡ ln α
1−α ∼ N(0, 4) and β ∼ N(β0,Σ0) with β0 = (0 0 . . . 0)′ and Σ0 = IK .

The MCMC scheme is documented in Algorithm 1.

Steps [2] and [3] in Algorithm 1 are simple Gibbs steps where parameters are

drawn from their conditional posterior distribution. Step [1] is a Metropolis–

Hastings step where parameters α and β are both drawn before the accept/reject

phase, which improves convergence.9

7For instance, using a GHK (see Geweke, Keane, and Runkle (1994)) algorithm.
8This is only a sufficient condition, see assumptions 2 and 3, and the discussion on page 1903

in Lee (2004). An alternative is to endogenize the interaction matrixT and invoke limited spatial
dependence arguments, as in Qu and Lee (2015). In either case, the study of heterogeneity is
not straightforward.

9An alternative would be to update β through a Gibbs step and then draw α using a
Metropolis–Hastings step.
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Algorithm 1 MCMC algorithm
Set initial values to β0, α0, p

∗
0, γ0

for j = 1 to M , where M denotes the number of MCMC iterations do
[1] - Sample β, α ∼ β, α|p∗, p, γ :
• Draw α̃∗ ∼ N

(
α̃j−1, σ̄

2
j−1

)
in which the scale σ̄2

j−1 is adapted over the
MCMC iterations using the approach of Atchadé and Rosenthal (2005)
and set α∗ = eα̃

∗
/(1 + eα̃

∗
).

• Sample β∗|α∗ ∼ N(β̄α∗ ,Σα∗), where β̄α∗ = Σ−1[X′Bα∗ [I − α∗T]p∗ +
Σ−1

0 β0], and Σα∗ = [Σ−1
0 + X′B2

α∗X]−1.

• Accept or reject the draw β∗, α∗ according to the Metropolis-Hastings
ratio,

χMH(β∗, α∗|β̄j−1, αj−1) = Max{ f(p∗|α∗)f(α∗)

f(p∗|αj−1)f(αj−1)
, 1},

where f(α) is the prior density function of α, and f(p∗|α) = f(p∗|α,β̄α)f(β̄α)

f(β̄α|p∗,α)
.

[2] - Sample γ ∼ γ|p∗, p,β, α :
• For k = 2, ..., K − 1, draw γk|γk−1, γk+1 ∼ U [u, ū],
where u = max {maxi {p∗i : pi = k} , γk−1}, and ū =
min {mini {p∗i : pi = k + 1} , γk+1}.

[3] - Sample p∗|p, γ,β, α :
• For all i, draw p∗i from a truncated normal distribution having a unit
variance and a mean equal to xiβ if i is isolated, and a mean αTip

∗ +
(1 − α)xiβ if i is non-isolated (recall that Tii = 0). For pi = k, the left
truncation is γk−1 and the right truncation is γk.

end for
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3 Data

We use data from the National Longitudinal Study of Adolescent to Adult Health

(Add Health). The study began in 1994 (Wave 1) with a representative sample

of students from grades 7 to 12. For our main purpose, we use data from the first

wave to evaluate peer effects on the students’ beliefs regarding the likelihood that

they will go to college.10 We also use the data from Wave 2 for our robustness

analysis in sections 4.4 and 6.3.

In addition to the information about the students’ beliefs, the survey contains

information vis-à-vis the students’ preferences regarding college, as well as many

relevant socio-economic and demographic characteristics. In particular, students

are asked how much they want to go to college as well as how likely they think this

will happen. Although the two questions are clearly correlated, there is substantial

variation, which allows us to capture the role of beliefs, while controlling for

preferences.11

For a subset of 16 schools, the survey contains a full description of the students’

friendship network. In the context of this paper, we assume that student i learns

from student j if, and only if, i nominated j as a friend. Table 1 presents the

summary statistics.

4 Results

In this section, we present the results of the estimation for the entire sample as

well as for a subset of two relatively large schools. We begin by discussing the

interpretation of the parameter α: essentially, the identification of social learning

using model (3).
10Estimations are robust for the use of data of the second wave (1995) for which a similar set

of variables is available.
11See Table 8 of the Appendix.
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Table 1: Summary statistics

Mean Std. Dev. Min Max
Educational expectations
Belief (ordinal) 4.05 1.14 1 5
College preference (ordinal) 4.37 1.05 1 5
Individual characteristics
Age 15.01 1.41 11 19
Female 0.49 0.50 0 1
Grades 7–8 0.22 0.41 0 1
Grades 9–10 0.48 0.50 0 1
Grades 11–12 0.30 0.46 0 1
White 0.61 0.48 0 1
Black or African–American 0.15 0.36 0 1
Hispanic 0.18 0.38 0 1
Mother education
Less than high school 0.07 0.26 0 1
High school 0.24 0.43 0 1
More than high school 0.29 0.45 0 1
Father education
Less than high school 0.07 0.25 0 1
High school 0.18 0.38 0 1
More than high school 0.25 0.43 0 1
Household characteristics
Household size 4.52 1.15 1 6
Network statistics
Average number of friends 3.33 2.75 0 10
Number of female friends 1.68 1.59 0 5
Number of male friends 1.65 1.60 0 5
Isolated students 595
Number of students 2,255
Number of schools 16

Notes: The variables “Belief” and “Preference” are both on an ordinal scale. The specific
questions read: “On a scale of 1 to 5, where 1 is low and 5 is high, how likely is it that you will
go to college?” and “On a scale of 1 to 5, where 1 is low and 5 is high, how much do you want

to go to college?”.

4.1 Interpretation of α

Although α is identified from the structural econometric model, an important

concern is that it may not necessarily capture social learning (e.g. Angrist (2014)

or Kline and Tamer (2014)). In fact, as for most of the existing literature, social

interaction effects (here α) are picked up as residual correlations between outcomes

(here, beliefs) after controlling for other potential sources of correlation.

Perhaps the most important source of correlation is the presence of common

unobserved shocks.12 The beliefs of students i and j may be correlated because

they share a common (unobserved) source of information; for example, whether
12Also called “correlated effects” (Manski, 1993).
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or not a career counselor is present in the school. In this paper, we control for

these unobserved shocks using school-level fixed effects.

Another common source of correlation is introduced by the endogeneity of

the network structure. In particular, α can not only capture social learning, but

it can also capture the correlation between beliefs due to self-selection into the

friendship network. For example, students i and j may become friends because

they share common beliefs. If this point is conceptually valid, we are not worried

about this issue in our context.

Indeed, multiple studies have shown repeatedly that the impact of self-selection

is virtually nonexistent in the context of the particular database that we use

(e.g. Goldsmith-Pinkham and Imbens, 2013; Boucher, 2016; Hsieh and Lee, 2016;

Boucher and Fortin, 2016). A likely explanation is the extremely weak predictabil-

ity of friendship relations. As presented in detail in Appendix 6.3, the marginal

effects of most identified explanatory variables is very weak (on the order of 10−5

for the probability of creating a friendship relation). This is expected as friend-

ship relations are rare events: for any two randomly selected individuals, the

probability of friendship is very small.

The only variable that has some meaningful predictive power is the preexis-

tence of a friendship relation. For the entire sample of 16 schools, the existence

of a friendship relation in Wave 1 only increases the probability of friendship in

Wave 2 by less than 2% (see Table 6 of Appendix 6.3). However, it may have some

predictive power when we restrict the sample to specific schools. For example, for

School 28, having a friendship relation in Wave 1 increases the probability of a

friendship relation in Wave 2 by 42% (see Table 7 of Appendix 6.3). Regardless,

this analysis suggests that any unobserved predictor of friendship relations is likely

to have a very weak bias on the estimated value of α (see below for additional

verifications of robustness).

A final source of correlation is due to omitted individual variables. Here, an

important comment should be made: we make no causal claim for the estimated
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parameters β. Indeed, many variables included in X are likely endogeneous. For

example, unobserved effort is likely to be correlated with the students’ beliefs,

academic achievements, or college preferences. That being said, including aca-

demic achievement and college preference variables is nonetheless crucial to the

interpretation of α as a social learning effect.

Many studies have shown the presence of peer effects on academic achievement

(e.g. Sacerdote et al., 2011) or preferences for college (e.g. Giorgi, Pellizzari, and

Redaelli, 2010). Thus, if we were to exclude achievement and preference variables,

the within-network correlation of beliefs, picked up by α, would not only capture

social learning, but it would also capture peer effects for academic achievement

and college preferences.

Regardless, we also present, as a robustness check in Section 4.4, a version

of the model estimated in deviations, which account for unobserved individual

fixed effects. The fact that we obtain very similar results therefore reduces the

likelihood that the measured value for α is due to unobserved common shocks,

endogenous friendship selection, or missing individual variables.

A final concern for the interpretation of α comes from a potential mis-specification

of the theoretical model. Although this is always a possibility, previous studies

have preferred models similar to (3) to the Bayesian alternative (Chandrasekhar

et al., 2015). In addition, a particular feature of social learning is that beliefs can

be thought as being directly transmitted from a student to their peers (e.g. by

talking), as opposed to other outcomes, such as body mass index (BMI). Indeed,

since a student’s BMI does not directly affect their peers’ BMI, the social trans-

mission necessarily goes through the students’ (unobserved) effort, which also has

to be modeled to interpret α as capturing social interactions (e.g. Boucher and

Fortin, 2015).
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4.2 Results and Heterogeneity Across Schools

We first perform the estimation for the entire sample (i.e. for the 16 schools).

Results are presented in Table 2 and the histograms for all posterior distributions

are presented in Figure 3 of Appendix 6.5. We find that, on average, the beliefs of

a student’s peers account for about 12% of the updating of their beliefs. Female

students have a more positive attitude toward college, as do students having

educated parents.

Table 2: Estimation of homogeneous peer effects
Mean Std. Dev.

Endogenous effect α 0.121∗∗∗ 0.026
Child’s characteristics
Female 0.292∗∗∗ 0.055
Grades 9–10 0.189 0.129
Grades 11–12 0.328∗∗ 0.165
Age -0.052 0.038
White -0.090 0.095
Black or African–American -0.028 0.106
Hispanic -0.079 0.089
Mother education
Less than high school -0.100 0.121
High school 0.073 0.089
More than high school 0.210∗∗∗ 0.092
Father education
Less than high school -0.018 0.120
High school -0.040 0.088
More than high school 0.276∗∗∗ 0.085
Household characteristics
Household size -0.017 0.016
Urban 0.287 1.350
Constant 0.260 1.854
γ2 0.855∗∗∗ 0.053
γ3 2.047∗∗∗ 0.047
γ4 2.961∗∗∗ 0.044
College preferences yes
Grade in mathematics, English, history, and science yes
School fixed effect yes
Observations 2,255

Note: We let our chain run for 20, 000 iterations, discarding the first 9, 999 iterations; ∗p < 0.1; ∗∗p < 0.05;
∗∗∗p < 0.01.

To explore the heterogeneity of social learning, we also ran the model, sepa-

rately, for the two largest schools in our sample. Figure 1 presents a kernel density

estimate of the posterior distribution of α for both schools. The full results are

presented in Table 9 in Appendix 6.4.

We see that social learning is more important in School 58. This is interesting
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Figure 1: Heterogeneity among schools

as the distribution of beliefs is similar for both schools (see Figure 2 of Appendix

6.4). Thus, from a policy point of view, information campaigns are likely to be

more effective in School 58 since beliefs are more dependent on social learning

and less on factors that are difficult to influence through policies (e.g. parents’

education).

4.3 Individual Heterogeneity

In this section, we explore in greater detail the role of heterogeneity in social

learning. In the previous section, we found that the weight associated to friends’

beliefs can vary among schools. Here, we assume that this weight can vary among

students. Specifically, we assume that the learning process of student i is as

follows:

p
∗(t)
i =

α(i)

ni

∑
j∈Ni

p
∗(t−1)
j + (1− α(i))xiβ + εi
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where α(i) = 0 if i is isolated, and where α(i) ∈ α ≡ {α1, α2} if i is not isolated. We

therefore assume that non-isolated students can be classified into two (unobserved)

groups. Using the same argument as before, we can show that the steady-state

beliefs are given by:

p∗ = [I−AαT]−1 [I−Aα] Xβ + [I−AαT]−1 ε, (4)

where Aα is a diagonal matrix taking Aii = α(i) for all i. One can easily verify

that (3) is a special case of (4).13

To estimate the parameters (and to divide the students into two groups), we

augment the model with a latent component S = {s1, s2, . . . , sN}. The variable

si ∈ {1, 2} represents the group to which the student i belongs and exhibits a prior

distribution given by P [si = 1] = q. Given this new state variable, the model for

non-isolated students can be restated as:

p∗i |p∗−i, si,β,α ∼ N(αsiTp∗ + (1− αsi)xiβ, 1). (5)

Equation (5) highlights that sampling the state is straightforward since, for k ∈

{1, 2}, the conditional probability function of the variable is given by P (si =

k|p∗,β,α) ∝ f(p∗i |p∗−i, si = k,β,α)P [si = k]. The MCMC steps used to estimate

the model parameters are presented in Algorithm 2.14

Due to the computational burden of Algorithm 2, we only present results for

School 77 (the largest school in our sample). Our results can be found in Table 3.

The difference between the two groups is striking. For some students (Group

1), social learning is small (around 8%). However, for other students (Group 2),

social learning is very important (close to 80%). The composition of those two

groups, as well as the strength of social learning within each group, is determined
13In a classical setting, this model would be called a finite mixture (or latent class) model and

estimated using an EM (expectation-maximization) algorithm.
14Alternatively, see Algorithm 3 in Appendix 6.4
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Algorithm 2 MCMC algorithm
Set initial values to β0,α0, p

∗
0, γ0, S0, q0

for j = 1 to M , where M denotes the number of MCMC iterations do
[1] - Same as in Algorithm 1 but also conditional on S.
[2] - Same as in Algorithm 1.
[3] - Same as in Algorithm 1.
[4] - Sample S ∼ S|p∗, p, γ,β,α :
for i = 1 to N do

• Draw u ∼ U [0, 1] and fix si = 1 if u ≤ P (si = 1|p∗,β,α). Set si = 2
otherwise. Note that P (si = 1|p∗,β,α) ∝ fN(p∗i |α1Tp∗+(1−α1)xiβ, 1)q,
where fN(x|µ, σ2) stands for the normal density function with expectation
µ and variance σ2 evaluated at x.

end for
[5] - Sample q|S ∼ Beta(1 + n1, 1 + n2), where nk =

∑N
i=1 1{si=k}.

end for

entirely by the data. Therefore, this method allows us to capture the unobserved

heterogeneity in social learning.

The estimation technique also provides, for each student, an estimate of the

probability of belonging to one of the two groups.15 We can therefore search for

predictors of this probability. In Table 4, we present the results of a (censored)

regression for the probability of belonging to Group 1.

First, note that there are few significant predictors. This is important as

it means that the strength of social learning cannot be directly predicted by

observable variables in our sample. The sorting of the students between the two

groups therefore truly captures unobserved heterogeneity.

That being said, one of the variables that appears to predict group membership

is the students’ beliefs. All else being equal, students having higher beliefs are

less likely to belong to Group 1 and are therefore more likely to rely on social

learning when forming their beliefs. This is somewhat intuitive. More pessimistic

students (those having low beliefs, everything else being equal) are less likely to

discuss their beliefs with their friends and therefore to update their beliefs as a
15Using the average value of si among draws from the posterior distribution.
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Table 3: Heterogeneous peer effects in Wave 1 (School 77)
Mean Std. Dev.

Endogenous peer effects
α1 0.079∗∗ 0.038
α2 0.735∗∗∗ 0.185
Child’s characteristics
Female 0.340∗∗∗ 0.084
Grades 9–10 -0.331 0.465
Grades 11–12 -0.439 0.491
Age -0.016 0.053
Born in the USA 0.064 0.117
White -0.153 0.106
Black or African–American 0.042 0.122
Hispanic -0.109 0.111
Mother education
Less than high school 0.087 0.179
High school 0.041 0.141
More than high school 0.199 0.139
Father education
Less than high school -0.140 0.170
High school 0.020 0.162
More than high school 0.139 0.130
Household characteristics
Household size -0.016 0.022
Constant 0.318 0.762
γ2 0.813∗∗∗ 0.075
γ3 2.136∗∗∗ 0.057
γ4 3.004∗∗∗ 0.060
College preferences yes
Grade in mathematics, English, history and science yes
Observations 920

Note: We let our chain run for 20, 000 iterations, discarding the first 11, 999 iterations; ∗p < 0.1; ∗∗p < 0.05;
∗∗∗p < 0.01.
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result of social interactions.

Table 4: Predictors of Group 1

Est. Std. Dev.

Individual characteristics
Intercept 0.126 0.354
Female 0.048∗ 0.023
Grades 11–12 -0.043 0.032
Born in the USA 0.057 0.031
Age 0.036 0.022
White -0.042 0.030
Black or African–American 0.002 0.035
Hispanic -0.002 0.029
College preferences 3 0.010 0.067
College preferences 4–5 -0.064 0.065
Belief 3 −0.118∗ 0.055
Belief 4–5 -0.095 0.054
Network structure
Betweenness centrality 2.739 3.030
Mother education
Less than high school 0.021 0.048
High school -0.061 0.040
More than high school -0.063 0.036
Father education
Less than high school -0.057 0.047
High school 0.004 0.044
More than high school -0.001 0.034
Household characteristics
Household size 0.010 0.006
Observations 630

The importance of unobserved heterogeneity has powerful policy implications.

The results of Table 4 imply that the heterogeneity of peer effects captured using

our structural model (which is computationally and data intensive) cannot be

easily predicted using observable characteristics.

This is important as the literature widely promotes the key player principle:

policies should target the most central individual(s) in the network (often us-

ing Bonacich’s centrality, see Ballester et al. (2006) or Zenou (2016) for details).

However, when peer effects are heterogeneous, those centrality measures must be

adjusted using a weighted network analysis. If the policy maker cannot easily cap-

ture the (strong) heterogeneity, their policies will be targeted toward the wrong

individuals.

Thus, in the context of strong unobserved heterogeneity, and where large-base

information policies are relatively cheap (Hoxby and Turner, 2013), we argue that

20



policies not targeted toward networks should be privileged.16 Moreover, the fact

that we capture strong social learning is also an indication that those policies

are likely to have a significant impact as they may act as a substitute to friends’

subjective beliefs.

4.4 Robustness: Unobserved Fixed Effect

As described in Section 3, we observed students’ beliefs for two consecutive years

(waves 1 and 2). In this section, we use this feature of the data to account for

the possibility of unobserved individual fixed effects. Specifically, we extend (3)

as follows:

pw∗ = [I− αTw]−1Bα[Xβw + µδw] + [I− αTw]−1εw (6)

where µ is unobserved and where the parameters βw and δw are allowed to vary

for each wave, w = 1, 2. We also normalize δ1 = 1.

Isolating µ for w = 1 and then substituting, we easily find:

p2∗ = [I− αT2]−1[BαX(β2 − δ2β1) + δ2p1∗ − δ2αT1p1∗] + [I− αT2]−1ε̃

where ε̃ = ε2 − δ2ε1. Here, as the latent variable p1∗ is not observed, we use the

mean of the posterior distribution from Section 4.2 as a proxy.17

The estimated values are presented in Table 5. Results for α are remarkably

close to the baseline estimates to add further credibility to the interpretation

of α as social learning. Also, the small estimated effect for δ2 implies that the

contribution of the previous year’s beliefs is small, which increases the probability

that the learning process effectively converged in the data.
16Note that this argument holds even if the “true” number of latent classes is greater than

two. Indeed, a sufficient condition for our argument is that we find some strong unobserved
heterogeneity, not that we measure it perfectly.

17An alternative would be to estimate the models jointly. However, the computational burden
makes this approach impractical.
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Table 5: Contribution of unobserved fixed effects for School 77 in Wave 1.
Mean Std. Dev.

Endogenous effect α 0.113∗∗∗ 0.033
Unobserved fixed effect δ2 0.068∗∗∗ 0.026
Child’s characteristics
Female 0.406 0.087
Grades 9–10 -0.336 0.354
Grades 11–12 -0.127 0.303
Age 0.021 0.040
Born in the USA -0.127 0.114
White -0.030 0.110
Black or African–American 0.229∗ 0.122
Hispanic 0.121 0.108
Mother education
Less than high school -0.087 0.186
High school -0.223 0.145
More than high school 0.127 0.137
Father education
Less than high school 0.103 0.169
High school 0.327∗∗ 0.162
More than high school 0.298∗∗ 0.133
Household characteristics
Household size -0.021 0.021
Constant -0.902 0.751
γ2 0.798∗∗∗ 0.109
γ3 2.088∗∗∗ 0.156
γ4 2.883∗∗∗ 0.156
College preferences yes
Grade in mathematics, English, history, and science yes
School fixed effect yes
Observations 920

Note: We let our chain run for 20, 000 iterations, discarding the first 9, 999 iterations; ∗p < 0.1; ∗∗p < 0.05;
∗∗∗p < 0.01.
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5 Conclusion

In this paper, we study peer effects on students’ beliefs regarding college partici-

pation. To do so, we specify a structural model in which the students’ beliefs are

updated with respect to their friends’ beliefs and other socio-economic character-

istics. The steady state represents a multivariate ordered probit that is estimated

using a Bayesian approach. Given that few papers take the discreetness of the

outcome into account, we discuss identification issues and show that our model

parameters can be identified. In addition, we also discuss the interpretations of

parameters, and we estimate multiple models to ensure the robustness of our re-

sults.

When the 16 schools are taken together, we find a peer effect on beliefs that

amounts to 12% on average. However, we highlight that the average effect may be

meaningless since we find much network heterogeneity. If we estimate, separately,

the same model for the two largest schools, we observe peer effects that reach 13%

and 25%, respectively. While this result emphasizes some heterogeneity among

the different schools, we also explore the unobserved heterogeneity within schools.

Importantly, we find two groups of students. On one hand, we have students that

have strong beliefs and that are hardly influenced by others. On the other hand,

we also uncover a group that exhibits a very strong social learning effect (up to

73%). This finding, coupled with individual socio-economic characteristics being

unable to explain group affiliation, leads us to believe that policies targeting key

player(s) are likely ineffective. In particular, before finding the key player(s), one

must first understand the heterogeneity of the network and then target those who

are sensitive to peers’ beliefs so as to adapt the key player’s argument.

As a final note, we see this work as a first step toward a better understanding

of network heterogeneity. One important research avenue lies in capturing the

variable that can predict the level of students’ social learning.
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6 Appendix

6.1 Convergence

Define the mapping:

F (p∗) = αTp∗ + BαXβ + ε.

We have:

‖F (p∗)− F (p̃∗)‖ ≤ α‖T‖‖p∗ − p̃∗‖

for any submultiplicative norm ‖ · ‖. Using the sup norm for instance, we have

‖T‖ ≤ 1 (it equals 1 whenever there is at least one non-isolated student). This

implies that F is a contraction mapping. Therefore, there exists a unique p∗, such

that p∗ = F (p∗), which implies that the matrix [I− αT] solving the linear system

is invertible.

6.2 Identification

In general, without isolated individuals (isolated individuals can only help identi-

fication), we then have:

p∗ = (1− α)[I− αT]−1Xβ + [I− αT]−1ε

Letting Aα be a diagonal matrix with the diagonal elements of [I − αT]−1, we

then have:

p∗ = Aα[(1− α)A−1
α [I− αT]−1Xβ + ν]

where ν is normally distributed with a mean of 0 and a variance-covariance matrix

in correlation form (normalized variances): A−1
α [I − αT]−1[I − αT′]−1A−1

α . The

model is therefore identified whenever A−1
α [I−αT]−1 6= aI for some a > 0, which

is equivalent to saying that T is not a diagonal matrix; this is true by assumption.
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6.3 Predictability of Friendship

We now present a simple probit model for the formation of friendship relations.

The second column of Table 6 presents the marginal effects for the first wave. The

third column presents the marginal effects for the second wave, adding the network

structure in Wave 1 as an explanatory variable. We see that the explanatory

power is extremely weak. Indeed, no variable has the potential of meaningfully

influencing the probability of linking. In particular, even the status of the network

in Wave 1 has little influence on the status of the network in Wave 2. Similar

results are also found for more sophisticated models of network formation (e.g.

Boucher (2016)).

The fact that most estimates are statistically significant is due to the extremely

large number of observations. We therefore also present results for School 28 in

Table 7. There, the loss in statistical significance is substantial, even if the number

of observations is still large (close to 12,000). However, previous links have a

significant explanatory power: being a friend in Wave 1 increases the probability

of being a friend in Wave 2 by 42%.
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Table 6: Network formation probit-marginal effects for all schools (×10−4).

gij,1 gij,2
Variables (1) (2) (3) (4)
Link at wave I (gij,1) - - 137.67∗∗∗ 70.54∗∗∗

∆ Female −0.2745∗∗∗ −0.1040∗∗∗ −0.3018∗∗∗ −0.1365∗∗∗

∆ Grade −1.0820∗∗∗ −0.2113∗∗∗ −0.7093∗∗∗ −0.1285∗∗∗

∆ Age −0.1650∗∗∗ −0.0221 −0.1032∗∗∗ −0.0028
∆ Belief −0.2356∗∗∗ −0.0982∗∗∗ −0.1159∗∗∗ −0.0601∗∗∗

∆ Math −0.0005 0.0021 −0.0183 −0.0168∗∗

∆ English 0.0068 0.0050 −0.0106 −0.0040
∆ History −0.0259∗∗∗ −0.0071∗ −0.0052 0.0017
∆ Science −0.0077 −0.0055∗ 0.0116∗ 0.0097∗∗∗

∆ College preferences −0.0325 −0.0250∗∗ −0.0468 −0.0289∗

∆ Father education −0.0022 −0.0105 0.1098 0.0418
∆ Mother education −0.1861 −0.1302∗∗ −0.1684 −0.1259∗∗

∆ Household size −0.0759∗∗∗ −0.0292∗∗∗ −0.0876∗∗∗ −0.0398∗∗∗

∆ White −1.2701∗∗∗ −0.2993∗∗∗ −1.0550∗∗∗ −0.2784∗∗∗

∆ Black −1.3903∗∗∗ −0.5386∗∗∗ −1.0403∗∗∗ −0.4715∗∗∗

∆ Hispanic −1.1540∗∗∗ −0.4904∗∗∗ −1.0920∗∗∗ −0.5305∗∗∗

∆ Urban −7.3520∗∗∗ −0.0488 −5.1057∗∗∗ −0.0692

School fixed effect no yes no yes
Log likelihood −33,349.402 −30,921.413 −25,305.575 −23,770.405
Pseudo R2 0.145 0.207 0.354 0.394
Observations 5,082,770

Note: *** p<0.01, ** p<0.05, * p<0.1. For any variable z, ∆zij = |zi − zj |. Columns (1) and
(3) investigate the network formation without a fixed effect. In both columns (2) and (4), we

control for the network (school) fixed effect.
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Table 7: Network formation probit-marginal effects in School 28 (×10−4).

Variables Tij,1 Tij,2
Link at wave I (Tij,1) - 4, 253.356∗∗∗

∆ Belief −2.682 13.993
∆ Female −40.262∗ −16.394
∆ Grade −52.629∗∗∗ −38.945∗∗

∆ Age −9.267 −7.821
∆ White −83.974∗ −90.938∗

∆ Black −27.764 −29.234
∆ Hispanic −86.913∗∗∗ −33.217
∆ College preferences −25.881 17.338
∆ Father education −0.213 −0.738∗∗

∆ Mother education 0.944∗∗ −0.560
∆ Household size −5.785 2.083
∆ Math 5.472 3.370
∆ English −16.523 −1.989
∆ History −0.266 −12.382
∆ Science 1.059 −11.193
Log likelihood − 999.642 − 992.153
Pseudo R2 0.054 0.242
Observations 11,990

6.4 Additional Material

Table 8: Students’ beliefs and preferences (Wave 1)

Preferences
Beliefs 1 2 3 4 5 Total
1 32.87 12.48 22.18 9.70 22.77 100
2 12.28 14.04 29.61 19.96 24.12 100
3 5.85 6.50 23.34 23.13 41.18 100
4 2.64 2.59 12.28 20.01 62.48 100
5 1.43 1.20 3.61 8.25 85.50 100
Total 4.48 3.46 10.59 13.67 67.80 100

The detailed MCMC scheme to estimate model (5) is given in Algorithm 3.
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Algorithm 3 MCMC algorithm
Set initial values to β0,α0, p

∗
0, γ0, S0, q0

for j = 1 to M , where M denotes the number of MCMC iterations do
[1] - Sample β,α ∼ β,α|p∗, p, γ, S :
• Draw α̃∗ ∼ N (α̃j−1, cj−1Σj−1) in which the scale cj−1 is adapted over the
MCMC iterations using the approach of Atchadé and Rosenthal (2005).
The covariance matrix Σj−1 represents the empirical covariance matrix of
α̃ realizations up to iteration j− 1 (updated only up to j = b0.3Mc). For
i = {1, 2}, set α∗i = eα̃

∗
i /(1 + eα̃

∗
i ).

• Set Σ̃−1
α∗ = [I − Aα∗T ]′[I − Aα∗T ], and X̃α∗ = [I − Aα∗T ]−1[I − Aα∗ ]X.

Sample β∗|α∗ ∼ N(β̄α∗ ,Σα∗), where β̄α∗ = Σ−1[X̃′α∗Σ̃−1
α∗p∗ + Σ−1

0 β0],
and Σα∗ = [Σ−1

0 + X̃′α∗Σ̃−1
α∗Xα∗ ]−1.

• Accept or reject the draw β∗,α∗ according to the Metropolis–Hastings
ratio,

χMH(β∗,α∗|βj−1,αj−1) = Max{ f(p∗|α∗, Sj−1)f(α∗)

f(p∗|αj−1, Sj−1)f(αj−1)
, 1},

in which the function f(α∗) represents the prior density function of α, and
f(p∗|α, S) = f(p∗|α,β̄α,S)f(β̄α)

f(β̄α|p∗,α,S)
.

[2] - Sample S ∼ S|p∗, p, γ,β,α :
for i = 1 to N do

• Draw u ∼ U [0, 1] and fix si = 1, if u ≤ P (si = 1|p∗,β,α). Otherwise, set
si = 2. Note that P (si = 1|p∗,β,α) ∝ fN(p∗i |αsiTp∗ + (1 − αsi)xiβ, 1)q,
where fN(x|µ, σ2) represents the normal density function with expectation
µ and variance σ2 evaluated at x.

end for
[3] - Sample q|S ∼ Beta(1 + n1, 1 + n2), where nk =

∑N
i=1 1{si=k}.

[4] - Sample γ ∼ γ|p∗, p,β, α :
for k = 1 to K − 1 do

• Draw γk|γk−1, γk+1 ∼ U [u, ū], where u = max {maxi {p∗i : pi = k} , γk−1},
and ū = min {mini {p∗i : pi = k + 1} , γk+1}.

end for
[5] - Sample p∗|p, γ,β, α :
for i = 1 to N do

• Draw p∗i from a truncated normal distribution having a unit variance and
a mean equal to xiβ if i is isolated, and a mean αsiTip

∗ + (1 − αsi)xiβ
if i is non-isolated. Recall that Tii = 0. For pi = k, the left truncation is
γk−1 and the right truncation is γk.

end for
end for
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Figure 2: Distribution of beliefs for schools 58 and 77.

Table 9: Heterogeneity between schools
School 77 School 58

Endogenous effect α 0.129∗∗∗ 0.040 0.248∗∗∗ 0.050
Child’s characteristics
Female 0.315∗∗∗ 0.085 0.344∗∗ 0.137
Grades 9–10 -0.749 0.651 -0.203 0.601
Grades 11–12 -0.841 0.671 0.221 0.657
Age -0.023 0.074 -0.063 0.093
White -0.147 0.107 -0.397 0.686
Black or African–American 0.012 0.121 -0.047 3.203
Hispanic -0.114 0.107 0.624 0.743
Mother education
Less than high school 0.107 0.178 -0.027 0.319
High school 0.062 0.140 0.137 0.223
More than high school 0.173 0.134 0.366 0.237
Father education
Less than high school -0.166 0.172 -0.409 0.332
High school -0.005 0.159 -0.017 0.206
More than high school 0.108 0.126 0.503 0.217
Household characteristics
Household size -0.015 0.021 -0.027 0.050
Constant 0.290 2.637 0.586 2.851
γ2 0.803∗∗∗ 0.095 0.811∗∗∗ 0.111
γ3 2.104∗∗∗ 0.096 1.960∗∗∗ 0.133
γ4 2.959∗∗∗ 0.096 2.887∗∗∗ 0.135
College preferences yes yes
Grade in mathematics, English, history, and science yes yes
Observations 920 521

Note: We let our chain run for 20, 000 iterations, discarding the first 9, 999 iterations; ∗p < 0.1; ∗∗p < 0.05;
∗∗∗p < 0.01.

29



30



6.5 Posterior Distributions

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 3: Posterior distributions for the estimation over the entire sample (con-

tinued).
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4: Posterior distributions for the estimation over the entire sample (con-

tinued).
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 5: Posterior distributions for the estimation over the entire sample (con-

tinued).
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

(k) (l)

Figure 6: Posterior distributions for the estimation over the entire sample (con-

tinued).
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(a) (b)

(c) (d)

(e) (f)

Figure 7: Posterior distributions for the estimation over the entire sample.
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