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ABSTRACT 
In this paper, we model network formation and network interactions under a unified framework. 
The key feature of our model is to allow individuals to respond to incentives that stem from 
interaction benefits of certain activities when they choose friends (network links), while 
capturing homophily in terms of unobserved characteristic variables in network formation and 
activities. There are two advantages of this modeling approach: first, one can evaluate whether 
incentives from certain interactions are important factors for friendship formation or not. 
Second, in addition to homophily effects in terms of unobserved characteristics, inclusion of 
incentive effects in the network formulation also corrects possible friendship selection bias on 
activity outcomes under network interactions. A theoretical foundation of this unified model is 
based on a sub-game perfect equilibrium of a two-stage game. A tractable Bayesian MCMC 
approach is proposed for the estimation of the model, and we demonstrate its finite sample 
performance in a simulation study. We apply the model to study empirically American high 
school students’ friendship networks from the Add Health dataset. We consider two activity 
variables, GPA and smoking frequency, and find a significant incentive effect from GPA, but not 
from smoking, on friendship formation. These results suggest that the benefit of interactions in 
academic learning is an important factor for friendship formation, whereas the interaction 
benefit of smoking is not. On the other hand, from the perspective of network interactions, both 
GPA and smoking frequency are subject to significant positive interaction (peer) effects. 
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1 Introduction

Economic research on social networks and interactions has grown rapidly over the past two

decades. In many economic contexts, social networks have been found to be an important

channel to disseminate information or facilitate transactions.1 Due to the importance of

social networks for a wide range of applications, both academic researchers and practitioners

have been and are still interested in understanding how network links are formed. Indeed,

the question is not only interesting in its own right, but it is also important for understanding

the role of network structures on economic outcomes.

For example, in the context of social interactions, we would like to understand how indi-

viduals choose their friends to benefit from peer effects on economic outcomes. In particular,

friendship networks may be formed to achieve favorable economic consequences; for exam-

ple, students may prefer choosing high-achieving friends who can help them study. Then,

if one is interested in measuring peer effects on academic achievement, they need to correct

for possible endogeneity bias due to friendship selection, as itself might also be based on

academic achievement.

Moreover, endogenous friendship formation may amplify observed peer interactions due to

unobserved factors that affect both friendship selection and economic outcomes (Weinberg,

2007). For example, Goldsmith-Pinkham and Imbens (2013), Hsieh and Lee (2016), and

Johnsson and Moon (2016) study important unobserved driving factors and use them to link

network formation and network interactions to economic activities.

In this paper, we propose an unified modeling approach for individuals who form a

friendship network inside a group and have their economic behaviors influenced by their

friends’ behaviors once the network is formed. In particular, we focus on a static model and

1For example, job finding and labor force participation (Calvo-Armengol and Jackson, 2004; Calvó-

Armengol and Jackson, 2007; Bayer et al., 2008); social learning and knowledge diffusion (Conley and Udry,

2001, 2010); risk sharing and insurance (Fafchamps and Gubert, 2007a,b); obesity transmission (Christakis

and Fowler, 2007; Fowler and Christakis, 2008); peer effects on students’ academic achievement (Calvó-

Armengol et al., 2009); sport and club participation (Bramoullé et al., 2009; Liu et al., 2014); and juvenile

delinquencies or criminal activities (Ballester et al., 2010; Bayer et al., 2009; Patacchini and Zenou, 2008,

2012)
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present a novel approach for examining whether peer-influenced economic outcomes play

any role in the formation of friendship networks.2 Specifically, we allow for economic choices

that are subject to peer effect, e.g., smoking decisions, that impact an individuals’ utility of

forming network links.

Formally, we present a two-stage game. First, the network is formed, and then in the

second stage, individuals choose the intensity of their involvement in some economic activ-

ities. We focus on a “sub-game perfect” equilibrium; we allow individuals to anticipate the

second stage of the game when choosing the network.

The formation of the network, i.e., the first stage, follows the literature regarding the

stability and efficiency of social networks (Jackson and Wolinsky, 1996; Dutta and Jackson,

2000; Jackson, 2005; Caulier et al., 2015). Accordingly, we adopt a transferable utility

framework that allows individuals to make side payments. Indeed, we present a model

in which individuals may have preferences over global network features (e.g., popularity,

transitive triads, etc.). As such, individuals have a strong incentive to make side payments.

Once the network is formed, individuals choose the intensity of their activities in the sec-

ond stage. We therefore follow the literature dealing with games on networks (e.g., Ballester

et al., 2006; Calvó-Armengol et al., 2009; Bramoullé et al., 2014; Boucher, 2016) and fo-

cus on the Nash equilibrium. Specifically, individuals choose the intensity of each activity

non-cooperatively, taking the network and the other individuals’ choices as given.

The advantages of modeling both network formation and network interactions using an

unified framework are twofold: first, we can evaluate the importance of the individuals’

incentives that stem from economic activity interactions related to friendship formation.

That is, assessing how much individuals anticipate that they will be influenced once the

network is formed. Second, use of a jointly coherent model permits controlling for possible

friendship selection biases and allows for the study of peer effects of each activity.

A common empirical approach to model network formation is to assume pairwise in-

2A static network refers to a cross-sectional case in which only one observation of a network is available.

We focus on a static setting because most widely used social network data are cross-sectional, e.g., Add

Health data (Udry, 2003) and Indian rural village data (Banerjee et al., 2013). Limited students’ friendship

network data having a panel structure can be found in the literature dealing with stochastic actor-based

dynamic network modeling; for example, see Snijders (2001) and Snijders et al. (2010).
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dependence. For example, Fafchamps and Gubert (2007a,b) and Comola (2007) assume

pairwise independence and focus on individual and dyad-specific variables to explain the

formation of a network. Other examples include latent position models (Hoff et al., 2002;

Handcock et al., 2007; McCormick and Zheng, 2015) and models with unobserved degree

heterogeneity (Graham, 2017; Jochmans, 2018). In these models, individuals are assumed

to have unobserved positions in the network (or fixed effects) that reflect the heterogeneity

of their social or economic status. These unobserved positions allow researchers to control

the homophily effect in terms of unobserved individual characteristics.3

However as noted by Bramoullé and Fortin (2009), pairwise independence is a strong as-

sumption since it implies that the individuals’ utility functions are additively separable across

links. Then, even if such models are flexible enough to replicate many network statistics,

their microeconomic foundations involve strong assumptions.

In this paper, we go beyond pairwise independence specification and consider the expo-

nential probability distribution to model network data. The idea is to treat any observed

network as one of the 2m(m−1) possible configurations for links among a population of m

individuals. This idea matches the Exponential Random Graph (ERG) model proposed by

Frank and Strauss (1986) or, more generally, the p∗ model of Wasserman and Pattison (1996)

in the statistical literature.

In either an ERG or a p∗ model, several selected network statistics, such as the number

of reciprocal links, the number of k-stars, k ≥ 2, and the number of triangles, are specified

using an exponential probability distribution as a way to measure how likely these network

structures would appear in a network. However, the parameters of these network statistics

in ERG and p∗ models do not allow for casual interpretations.

Contrary to the standard literature on ERG models, we motivate our model specification

using a formal economic model where the probability of the observed network is given by

the shape of the unique equilibrium of the game. Meanwhile, we also control unobserved

individual heterogeneity through latent variables, as in Hsieh and Lee (2016). As a result,

our proposed network formation model handles three distinguished features: observed and

3Under pairwise independence, the likelihood of the entire network being conditional on the unobservables

is the product of the likelihoods from all pairs.
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unobserved individual heterogeneity, global network dependence, and endogenous economic

activities as incentives in link decisions. To our knowledge, this is the first paper to do so.

The drawback of using a very generic and flexible specification is that it complicates

the estimation. Indeed, the likelihood function of an ERG model involves an intractable

normalizing term in the denominator, which requires the evaluation of the network statistics

for all possible network realizations. To handle the intractable normalizing term during

the estimation, many suggestions have been proposed; they include, for example, using

simulations in a classical estimation setting (Geyer and Thompson, 1992; Snijders, 2002)

or in a Bayesian setting with auxiliary Markov chain Monte Carlo (MCMC) (Liang, 2010;

Murray et al., 2006; Mele, 2017b).

Due to its numerical efficiency, in this paper we adopt a Bayesian method based on

a double Metropolis-Hastings (M-H) algorithm (Liang, 2010) to deal with the intractable

normalizing term. We also implement the modification of the double M-H algorithm proposed

by Mele (2017b). We conduct an extensive simulation study to show that the proposed

Bayesian MCMC sampler can successfully recover true model parameters from artificially

generated network data. We also examine model misspecification issues in the simulation

and provide new evidence of network endogeneity biases within network interaction studies.

We apply our model to the study of American high school students’ friendship networks

using the Add Health data. We focus on two activity variables: students’ GPA and smoking

habits. We find a significant impact of a student’s GPA on the formation of the network,

but we observe no effect from their smoking habits. However, we find peer effects for both

activities. This suggests that the interaction in academic learning is a factor for building

friendships, whereas the interaction in smoking is not.

Our results also reveal significant homophily effects from both the observed and unob-

served characteristics in network formation. Unobserved characteristics in network formation

have significant influence on activity outcomes. That is, peer effects on GPA and smoking

are subject to selection biases due to unobserved characteristics linked to the formation of

friendship relations.

This paper contributes mainly to two strands of the literature. First, it contributes to the

empirical literature on network formation. Graham (2017) and Jochmans (2018) introduce
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node-specific parameters to capture degree heterogeneity in a pairwise independent link

formation model; however, they ignore any possible network externality effects.

Sheng (2014), Miyauchi (2016), and De Paula et al. (2018) specify strategic network

formation models and characterize the equilibria of the model by pairwise stability condi-

tion (Jackson and Wolinsky, 1996). Instead of imposing equilibrium selection assumptions,

they specify incomplete models and utilize a partial identification approach.

Christakis et al. (2010) and Mele (2017b) model network formation as a sequential pro-

cess where in each period a single, randomly-selected pair of agents has the opportunity to

meet and decide to form or sever a link. This sequential process is equivalent to an equilib-

rium selection mechanism in the corresponding static model (Jackson and Watts, 2002). In

contrast, our equilibrium concept, which allows for side payments, leads to a static random

utility model.

More specifically, we contribute to the empirical literature on ERG models of network

formation (e.g., Boucher and Mourifié, 2017; Chandrasekhar and Jackson, 2014; Mele, 2017b;

Mele and Zhu, 2017; Mele, 2017c). With an exception of Mele (2017c), the literature as-

sumes that econometricians observe all of the payoff-relevant variables. We contribute to

the literature by allowing for unobserved heterogeneity using latent variables, following the

strategy used in Hsieh and Lee (2016) and Hsieh and Van Kippersluis (2018). Also, our

transferable utility setting allows us to study a wider range of preferences. In particular, we

do not require the existence of a potential function.

Second, this paper contributes to the literature on peer effects in endogeneous networks

(e.g., Goldsmith-Pinkham and Imbens, 2013; Hsieh and Lee,2016).4 In particular, this paper

contributes to the emerging empirical literature studying the impact of economic actions on

the formation of a network.5 To our knowledge, the only three existing papers that deal

with this aspect are Badev (2018), Boucher (2016) and Lewis-Faupel (2016).

Lewis-Faupel (2016) focuses on a setup where individuals take a single binary action

under rational expectations. This binary action is anticipated in the network formation

4See also Boucher and Fortin (2016) for a recent discussion and additional references.
5There is a consequent theoretical literature. We refer the interested reader to Boucher (2016) for a

discussion and additional references.
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stage, where individuals form heuristic expectations.

Badev (2018) also focuses on a setup where individuals take a single binary action (affect-

ing the preferences on the network structure). He presents a random utility model and an

original equilibrium concept— based on stability constraints—that nests a pairwise-stable

and pairwise-Nash network. The equilibrium also follows an ERG model in which all payoff

relevant variables are assumed to be observed and where existence is only guaranteed for

potential games.

Boucher (2016) presents a model of conformism with respect to a single continuous action.

Since the model features many equilibria, he assumes that the data is generated by the

equilibrium that maximizes the potential function. Solving for such an equilibrium is not

feasible, thus the estimation is performed using the maximum of first- and second-order

approximations of the potential function.

This paper is organized as follows. Section 2 presents a unified modeling approach for

both network formation and network interactions on economic activities. A Bayesian esti-

mation method for the proposed model is discussed in Section 3. Section 4 provides a sim-

ulation exercise to examine the finite sample performance of the proposed Bayesian MCMC

estimation method. Section 5 provides an application of the model to high school students’

friendship networks and activities with the Add Health data. Section 6 concludes the pa-

per. Some additional technical details for the estimation and additional empirical results are

relegated to the Supplementary Appendix.

2 An economic model of peer effects in an endogenous

network

2.1 Description of the economy

Let W be an m × m matrix representing the friendship network of m individuals.6 The

(i, j)th entry of W , denoted as wij, equals one if individual i has a link to individual j and

zero otherwise. The notation wi stands for the ith row of W and W−i stands for W excluding

6It is also called spatial weights matrix, adjacency matrix, or sociomatrix in the literature.
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wi. We assume that the links are directed, so it is possible that i has a link to j, while j is

not linked to i (i.e., W is not symmetric).7 We normalize diagonal elements so that wii = 0

for all i ∈ (1, ...,m).

Let X be the m × k matrix of individual characteristics and let xi be the ith row of

X. Individuals choose the intensity of their involvement in economic activities. For each

activity d ∈ (1, ..., d̄), let yi,d denote the intensity of individual i in activity d. Let also

Yd = (y1,d, · · · , ym,d)′ be the m-dimensional column vector of intensities for activity d and

Y−i,d be the m − 1 dimensional vector with yi,d removed from Yd. We assume that yi,d

is continuous, or continuous on strictly positive values, but we allow for left censoring at

zero. Formally, we consider either yi,d ∈ R or yi,d ∈ R+.8 The impact of left censoring on

equilibrium activity intensity is formally described in Proposition 1 in Section 2.3.

2.2 Preferences

The preferences of any given individual i are represented by the utility function:

Ui(W,Y1, ..., Yd̄) = vi(W ) +
d̄∑
d=1

δdui,d(yi,d, Y−i,d,W ), (1)

where vi(W ) represents an explicit preference over the network structureW , while ui,d(yi,d, Y−i,d,W )

is the utility derived from activity d when individuals are choosing Yd = (yi,d, Y−i,d) and the

network structure is given by W . The coefficient δd ≥ 0 therefore captures the relative

importance (or weight) of the utility of activity d with respect to the utility of the network

vi(W ). We call this the incentive effect of activity d on network formation.9

It is worth noting that, conditional on W , the utility is separable across activities, so

we assume no complementarity across activities. However, since the network structure is

endogenously determined, the optimal choice for each activity will, at equilibrium, be a

7This non-reciprocity is motivated by our empirical application. In fact, 54.36% of friendship links in

our dataset (Add Health) are non-reciprocal. This assumption is also present in Hsieh and Lee (2016), Mele

(2017b), Jochmans (2018), and others.
8We abstract from discrete choices in this paper as it generally involves multiple equilibria (Krauth, 2006;

Soetevent and Kooreman, 2007). This is left for future research.
9Since this is a two-stage game (see Section 2.3), δd can also be interpreted as an activity-specific discount

rate.
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function not only of the individual’s preferences for this particular activity but also of their

preferences for the other activities, and their explicit network preferences.10

Indeed, the equilibrium value for (W,Y1, ..., Yd̄) is the result of a complex interplay be-

tween individuals’ preferences over the network structure and their preferences regarding

each type of activity. This has important consequences for estimation, as will be discussed

in Section 5.

For tractability, we follow the literature (e.g., Ballester et al., 2006; Calvó-Armengol et al.,

2009; Bramoullé et al., 2014; Boucher, 2016) and assume a linear quadratic specification for

the utility of activity conditional on network structure:

ui,d(yi,d, Y−i,d,W ) = µi,dyi,d −
1

2
y2
i,d + λdyi,d

m∑
j=1

wijyj,d, (2)

where µi,d captures individual exogenous heterogeneity. The first and second terms of Eq. (2)

represent the private benefit and cost of increasing the intensity the activity (i.e., yi,d). The

third term reflects an additional social benefit (or cost) of increasing the intensity of the

activity for the individual, i.e., a complementary (or competitive) effect from peers’ activity

intensities whenever λd ≥ 0 (λd < 0).

We assume that individual i’s (explicit) preference for the network structure is given by:

vi(W ) =
m∑
j=1

wijψij︸ ︷︷ ︸
local network effects

+ $i(wi,W−i)η︸ ︷︷ ︸
global network effects

+τi,W , (3)

where τi,W is an idiosyncratic shock on the value of the network W for individual i.

In Eq. (3), the local network effects captured by ψij give the intrinsic bilateral value (for

individual i) of a link between i and j. This value is assumed to be independent from the

position of the individuals in the network. However, as argued by Bramoullé and Fortin

(2009), individuals may also have preferences over the entire network structure. These

preferences are captured by $i(wi,W−i)η and allow for preferences regarding many features

of the networks (e.g., popularity, clustering, etc.).

Specifically, $i(wi,W−i) is an h̄-dimensional row vector of network summary statistics

that are relevant to individual i’s utility, and η is the corresponding vector of coefficients.

10We also assume that the unobserved (for the econometrician) part of the utility functions for each activity

may be correlated. See Section 5.
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Note that by considering these global network effects, our network model differs substantially

from the pairwise independent network link case (Bramoullé and Fortin, 2009) and connects

to ERG models in the statistical literature. The empirical specification of global network

effects used in this paper is discussed in Section 2.4.

We now discuss our equilibrium concepts for (W,Y1, ..., Yd̄) and the timing of the game.

2.3 The game

The game occurs in two stages. In the first stage, the network links are determined. In the

second stage, individuals play a non-cooperative game for the choice of the activity intensities

(Y1, · · · , Yd̄), conditional on the network structure.

Our equilibrium (stability) concept for the first stage of the game is based on the lit-

erature focused on the stability and efficiency of network formation games (e.g., Jackson

and Wolinsky, 1996; Dutta and Jackson, 2000; Jackson, 2005; Caulier et al., 2015). In this

transferable utility setting, individuals are allowed to make side payments. For example,

individuals may be willing to spend time or resources so that other individuals want to be

linked to them. Although these side payments are not observed, they play an important role

in the efficiency of the equilibrium network.

The focus on a transferable utility framework in this paper contrasts with the existing

economic literature based on ERG models (i.e., as in Eq. (6) below). Indeed, the usual

microeconomic foundation is based on Christakis et al. (2010), Badev (2018), and Mele

(2017b) where individuals are assumed to have the opportunity periodically to meet another

and revise their friendship status (in a non-transferable utility framework). Importantly, it

is assumed that the revision of that friendship relation is done myopically, taking the rest of

the network structure as given. The meeting process runs through time, and it is assumed

that the observed network is drawn from its steady-state distribution.

In contrast, we focus on a static random-utility model and do not assume any specific

meeting process.11 This implicitly allows for a richer variety of meeting processes. Under

the assumptions of Section 2.2, individuals’ preferences not only depend on which friends

11The randomness is due to the unobserved preference shocks τi,W .
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they have, but also on the the global network effects (see Eq. (3)). Consequently, we might

expect individuals to be willing to spend resources to promote certain friendship relations.

To clarify the intuition, consider a very simple example of a population composed of

only three individuals (i, j, and k). Assume that the global network effect for i is given by

$i(wi,W−i)η = wijwkjη > 0 so that for i the value of a link with j is greater when there

exists a link between k and j, as Figure 1 illustrates.

Figure 1: Example of a simple global network effect.

Individual i would therefore be willing to spend resources to compensate individual k

for creating a link with j (provided they would not do so otherwise). Of course, this is just

a simple example, but the general intuition is the same: global network effects introduce

strong incentives for side payments, irrespective of the specification used.

Then, following the literature (see above), we focus on the set of networks that are both

efficient and individually stable (or rational)—allowing for side payments—where efficiency

is defined with respect to the network value T (W ). Although this quantity can be defined

in many ways, we assume (as in Dutta and Jackson (2000)) that the network value is given

by the sum of the individuals’ utilities, i.e., T (W ) =
∑

i Ui(W ).12 This definition allows to

see side payments as being made in “utility units”. We focus on strongly efficient networks

(Dutta and Jackson, 2000), i.e., networks W ∗ such that T (W ∗) ≥ T (W ) for all W .

Whether or not strongly efficient networks are individually stable depends on how the

network value is shared among individuals, i.e., how side payments are made. This is formally

described by the allocation rule Λi(W,T ) : T (W ) =
∑

i Λi(W,T ).13 If no side payments are

allowed, the allocation rule is simply given by the individuals’ utility: Λi(W,T ) = Ui(W ).14

Alternatively, if the value of the network is shared equally among individuals, we get:

12The dependence of Ui on Y is omitted on purpose. The formal definition is presented in Definition 1

below.
13This definition assumes implicitly that the allocation rule is balanced, as in Dutta and Jackson (2000).
14If there are side payments, the value of the side payments received by i is simply given by the difference

between the allocation rule and the utility: Λi(W,T )− Ui(W ).
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Λi(W,T ) = T (W )/m. Note that the balance requirement of T (W ) =
∑

i Λi(W,T ) imposes

that no outside resources are used in making side payments. Indeed, using our definition for

the network value, we obtain
∑

i Λi(W,T ) =
∑

i Ui(W ).

We say that a network W is individually stable if for all i, Λi(W,T ) ≥ Λi(W̃ , T ) for

all networks W̃ such that w̃jk = wjk for all k and all j 6= i.15 In essence, the network is

individually stable if no individual wants to create or remove links, given the side payments.

In what follows, we do not make any assumptions regarding the specific allocation rule used.

We merely assume that the allocation rule is selected among the (non-empty) set of allocation

rules compatible with both strong efficiency and individual stability.

Once the network is formed, individuals are free to select the intensity of the activities in

which they are involved, conditional on network structure. We follow the extensive literature

for games on networks (e.g., Ballester et al., 2006; Calvó-Armengol et al., 2009; Bramoullé

et al., 2014; Boucher, 2016) and assume that activity intensity choices are part of a Nash

equilibrium.16

Formally, our equilibrium concept for the two-stage game is defined as follows:

Definition 1. An (sub-game perfect) equilibrium of the two stage game is a collection

(W,Y1, ..., Yd̄) such that:

1. (Y1, ..., Yd̄) is in a Nash equilibrium, conditional on W . We denote such an equilibrium

by (Y ∗1 (W ), ..., Y ∗
d̄

(W )).

2. The network value

TY ∗(W ) =
∑
i

Ui(W,Y
∗

1 (W ), ..., Y ∗d̄ (W ))

is strongly efficient and individually stable under some allocation rules.

Note that the definition of the value of the network in the first stage of the game (i.e.,

TY ∗(W )) is given by the sum of the individuals’ utilities, anticipating that individuals will

play the Nash equilibrium Y ∗d (W ) in the second stage. In this sense, therefore, the equilibrium

is sub-game perfect since it is solved by backward induction. The next proposition follows.

15This is equivalent to saying that W is individually stable if W is a Nash equilibrium of the game where

individuals’ payoffs are given by the allocation rule.
16That is, (Y ∗1 , ..., Y

∗
d̄

) such that y∗i,d ∈ arg maxyi,d Ui(W,Y
∗
1 , ..., yi,d, Y

∗
−i,d, · · · , Y ∗d̄ ) for all i and d.
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Proposition 1. Assume that |λd| < 1/‖W‖∞, where ‖.‖∞ denotes the maximum row sum

norm for all d = 1, ..., d̄ and that τW ≡
∑

i τi,W is distributed according to a Type-I extreme

value distribution. Then, there exists a (generically) unique equilibrium of the two-stage

game. Moreover,

(i) for all d, such that yi,d ∈ R, we have:

Y ∗d (W ) = (Im − λdW )−1 µd, (4)

where Im is an m×m identity matrix and µd = (µ1,d, · · · , µm,d)′. While for all d such

that yi,d ∈ R+, the unique equilibrium is determined as:

y∗i,d(W ) = max{0, µi,d + λd

m∑
j=1

wijy
∗
j,d(W )}. (5)

(ii) The equilibrium value is given by TY ∗(W ) = V (W ) + τW , where:

V (W ) =
m∑
i=1

m∑
j=1

wijψij +
m∑
i=1

$i(wi,W−i)η

+
d̄∑
d=1

δd

[
µ′dY

∗
d (W )− 1

2
Y ∗
′

d (W )Y ∗d (W ) + λdY
∗′
d (W )WY ∗d (W )

]
.

Therefore, the probability of W at equilibrium is given by:

P (W ) =
exp{V (W )}∑
W̃∈Ω exp{V (W̃ )}

, (6)

where Ω is the set of all m×m network matrices.

The uniqueness of the Nash equilibrium uses standard arguments (e.g., Ballester et al.,

2006). Whenever |λd| < 1/‖W‖∞ for all d ∈ (1, ..., d̄), the best-response functions are

contraction mappings, leading to a unique fixed point. Note that the contracting property

also has the important numerical advantage of providing an iterative procedure to solve for

the equilibrium when yi,d ∈ R+. See the proof of Proposition 1 in Appendix A.

Also, since the Nash equilibrium in the second stage is unique, the value of the network is

also uniquely determined, i.e., TY ∗(W ) = T (W ). Since τW ≡
∑

i τi,W is distributed according

to a Type-I extreme value distribution, standard arguments show that the distribution of
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the maximum of T (W ) follows a logistic distribution.17 This guarantees that the unique

strongly efficient network is given by (ii) of Proposition 1.

An example of an allocation rule for which the strongly efficient network is also individ-

ually stable is Λi(W,T ) = T/m. Of course, this is not the only admissible allocation rule.

In particular, any allocation rule that can be written as a non-decreasing function of the

network value is individually stable. More generally, it is also possible to impose additional

normative properties on the admissible allocation rules. We refer the interested reader to

Dutta and Jackson (2000) for further discussions and results.18 Jackson (2005) also presents

an extensive discussion of the type of allocation rules compatible with both strong efficiency

and individual stability.

It is worth noting that the expression µ′dY
∗
d (W )− 1

2
Y ∗
′

d (W )Y ∗d (W ) + λdY
∗′
d (W )WY ∗d (W )

in the equilibrium value for V (W ) reduces to 1
2
Y ∗
′

d (W )Y ∗d (W ) when activity d’s intensity

is uncensored since we can exploit the closed-form solution in Eq. (4). In that case, the

incentive effect of activities is always non-negative (recall that δd ≥ 0). Indeed, as noted

by Ballester et al. (2006), this property holds whenever the choice of activities features

complementarities.19 As such, without explicit network preferences, i.e., vi(W ), individuals

would want to have as many links as possible, leading to the complete network. In Section 2.4,

we discuss the specific parametric assumptions of vi(W ) and how they prevent the model

from generically producing degenerated network structures.

2.4 Parametric specification

We further specify individual exogenous heterogeneity via µi,d = xiβ1d+
∑m

j=1wijxjβ2d+αd+

εi,d, where αd is a constant term, and εi,d is the unobserved heterogeneity of i’s preferences

regarding activity d. Following Proposition 1, the equilibrium for uncensored activities is

17Brock and Durlauf (2001) use the same assumption when specifying the social welfare function.
18See, in particular, their Theorem 4.
19Boucher (2016) studies a model of conformism having an endogenous network. He shows that conformism

has non-monotonic effects on the value of network links.
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given by:20

Y ∗d (W ) = (Im − λdW )−1 (Xβ1d +WXβ2d + lmαd + εd) , (7)

where lm is the m-dimensional vector of ones, and εd = (ε1,d, · · · , εm,d)′. Eq. (7) matches the

reduced form of the spatial autoregressive (SAR) model (Bramoullé et al., 2009; Lee et al.,

2010; Lin, 2010) for studying social interactions. The coefficient λd in Eq. (7) represents

the endogenous (peer) effect, which has been the focus of recent literature due to its policy

implications (Glaeser et al., 2003). The vector of coefficients βd = (β′1d, β
′
2d)
′ captures the

own and contextual effects of individuals’ and friends’ exogenous characteristics on Yd.

However, a notable departure from the literature is that the network structure W in

Eq. (7) is explicitly endogenous. To understand the source of this endogeneity, recall that

from Proposition 1, we have

P (W ) =
exp{V (W )}∑
W̃ exp{V (W̃ )}

.

For the sake of the discussion, assume for the moment that yi,d ∈ R, so that we have

V (W ) =
m∑
i=1

m∑
j=1

wijψij +
m∑
i=1

$i(wi,W−i)η +
1

2

d̄∑
d=1

δdY
∗′
d (W )Y ∗d (W ).

We see immediately that V (W ) is also a function of εd. Then, this implies that any shock

εd has three conceptually distinct effects. First, it directly affects Y ∗d , conditional on W .

Second, through its effect on Y ∗d , it indirectly affects network structure W through its effect

on V (W ). Third, through its indirect effect on W , it also affects Y ∗
d̃

for the other activities

d̃ 6= d.

This endogeneity is exacerbated if there exist unobserved variables that are directly

affecting the network formation as well as the intensity of the activities (e.g., Goldsmith-

Pinkham and Imbens, 2013; Hsieh and Lee, 2016). We also allow for such unobserved

variables in the following way: εd = Zρ1d + WZρ2d + ξd, where Z = (z′1, · · · , z′m)′ is a

m× ¯̀ matrix of unobserved (latent) variables. Note that Z is not specific to any activity d.

Correspondingly, the activity intensity of Eq. (7) can be rewritten as:

Y ∗d (W ) = (Im − λd(W ))−1 (Xβ1d +WXβ2d + Zρ1d +WZρ2d + lmαd + ξd) , (8)

20The parametric form for left-censored yi,d follows a similar structure.
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where we assume that ξd ∼ Nm(0, σ2
ξd
Im).

We assume that these unobserved variables may also affect individuals’ preferences over

links. Specifically, we follow Hsieh and Lee (2016) to introduce the multidimensional indi-

vidual latent variables zi = (zi1, · · · , zi¯̀)′ in the network formation process through the local

network effect as follows:

ψij = γ0 + ciγ1 + cjγ2 + cijγ3 +

¯̀∑
`=1

γ4`|zi` − zj`|. (9)

The variables ci and cj in Eq. (9) are observed s̄-dimensional row vectors of individual-specific

characteristics, and the variable cij is an observed q̄-dimensional row vector of dyad-specific

characteristics, such as whether i and j have the same age, sex, or race.21 In particular, the

individual and dyadic characteristics C = {(ci, cj, cij) : i = 1, · · · ,m, j = 1, · · · ,m, i 6= j}

control for observed homophily in the network formation process (see e.g., Fafchamps and

Gubert (2007a,b) in the context of risk-sharing network formation). For exposition purposes,

we denote γ = (γ0, γ
′
1, γ
′
2, γ
′
3, γ
′
4)′.

The variables |zi`−zj`| for ` = 1, · · · , ¯̀ in Eq. (9) are meant to capture the homophily on

unobserved characteristics. We therefore expect the coefficients γ′4s to be negative, reflecting

the fact that larger differences between individual unobserved characteristics reduce the

likelihood that two individuals become friends. Note also that for identification purposes, we

follow Hsieh and Lee (2016) and Hsieh and Van Kippersluis (2018) to impose the assumptions

on zi,` as follows: (1) the variance of zi,` is normalized to one; (2) zi` is independent across

i and `; (3) zi,` follows a known distribution, in our case a normal distribution; (4) to

distinguish different dimension of zi,`, we further restrict |γ41| ≥ |γ42| ≥ · · · ≥ |γ4¯̀|.22 Given

the role played by the latent variables Z in Eq. (9) for network formation, Z and WZ

that appear in Eq. (8) can also be interpreted as control functions for solving endogeneity

due to individual and contextual unobserved correlated effects (Fruehwirth, 2014; Hsieh and

Van Kippersluis, 2018).

21It is possible to specify cij = |ci − cj | if ci is continuous. For binary ci, however, we prefer the use of

dummy variables cij taking a value of 1 if i and j have the same value. Of course, this is fully equivalent to

taking the distance, which would take a value of 1 if i and j have different values, and 0 otherwise.
22The justification of these identification restrictions can be found in the Supplementary Appendix of

Hsieh and Van Kippersluis (2018).
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In our empirical application, we consider the following specification of global network

effects (see Eq. (3)):

$i(wi,W−i)η =
m∑
j=1

wij

{
η1wji︸ ︷︷ ︸

reciprocity effect

+ η2

m∑
k 6=j

wik + η3

(
m∑
k 6=j

wik

)2

︸ ︷︷ ︸
congestion effect

+ η4

m∑
k 6=i

wkj︸ ︷︷ ︸
popularity effect

+
m∑
k

η51wikwkj + η52wkiwkj + η53wikwjk︸ ︷︷ ︸
transitive triads effects

+ η6

m∑
k

wjkwki︸ ︷︷ ︸
three−cycle effect

}
. (10)

We discuss the interpretation of each term in Eq. (10) in turn and provide a visualization of

each effect in Figure 2.23

The reciprocity effect implies that (provided that η1 > 0) i enjoys more utility from a

link with j if j also has a link with i. The congestion effect (provided that either η2 < 0 or

η3 < 0) implies that the value for i of a link with j decreases with the number of links that

i has. This may represent the fact that i has limited resources, e.g., limited time, energy,

or money (Boucher, 2015). Note that we capture this effect by individual i’s out-degree and

out-degree square to allow this cost to be concave or convex. The popularity effect captures

the fact that i may enjoy more utility (if η4 > 0) from their link with j if j is popular, i.e.,

receives many links.

The transitive triads effects include preferences for cliques, i.e., explicit preferences for

the transitivity of the network. When i is considering a link to j, he may take into account

that he has a link to k, and k has a link to j. Therefore, the creation of a link between i and

j would close the triad between i, j, and k. There are, of course, other types of transitive

triads effects, displayed at the bottom left in Figure 2. A similar intuition holds for the

three-cycle effect, although as noted by Snijders et al. (2010), the emergence of more three

cycles in a network (see the bottom right of Figure 2) implies fewer hierarchical relationships

among individuals. As discussed by Davis (1970), social networks usually feature fewer three

cycles. We therefore expect η6 to be negative.24

23We also provide additional discussion in the Supplementary Appendix D.
24This is indeed what we find in our empirical study, see Table 4.

16



Figure 2: Global network effects

Given the parametric assumption in Eq. (10), we can write:

m∑
i=1

$i(wi,W−i)η = η1tr(W 2) + η2(l′mW
′Wlm − l′mWlm)

+ η3(l′mW
′Diag(Wlm)Wlm − 2l′mW

′Wlm + l′mWlm)

+ η4(l′mWW ′lm − l′mWlm) + (η51 + η52 + η53)tr(W 2W ′) + η6tr(W 3), (11)

where in general for an m × 1 vector A, Diag(A) is an m × m diagonal matrix with its

diagonal elements formed by the entries of the vector A. One can see that parameters η51,

η52, and η53 are not identified separately from Eq. (11). Hence, we will use η5 = η51 +η52 +η53

hereafter. We further denote η = (η1, · · · , η6)′ for the purposes of exposition.

It is important to note that by including the possible cost captured by the congestion

effect, some of the global-network effects are expected to produce sufficiently large negative

externalities on link formation so that individuals will not form links to everyone (and thus

results in a complete graph). Moreover, as discussed by Snijders et al. (2006), Bhamidi et al.

(2011), Chatterjee et al. (2013), and Mele (2017b), we need negative externalities in ERGMs

to produce sparser graphs so that they can be distinguished from Erdös-Rény random graphs

when the number of individuals increases. In our case, η2 (or η3) and η6 are expected to create
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such negative externalities, and we confirm that these parameter estimates are significantly

negative in our empirical study in Section 5.

3 Model estimation

3.1 Group heterogeneity

Prior to this section, we assumed that individuals belong to one, potentially large population.

However in many contexts—such as the high school students in our empirical application—

the population can be partitioned into groups, such that individuals can only form links

within each group. In this context, it is important to capture the heterogeneity across these

groups. We therefore expand the model assuming that the population is partitioned into G

groups, and we use the subscript g ∈ {1, · · · , G} to indicate explicit group heterogeneity.

3.2 Likelihood function of the model

To clarify the intuition of the estimation procedure—and for the purposes of exposition —we

assume that d̄ = 1 and that yi,d = yi is uncensored. Accordingly, we drop the subscript d

for clarity. In Appendix B, we present the analysis for the censored activity outcome case.

Although our preferred specification for the empirical application is for two activities (one

censored and one uncensored), its formal description involves additional notations and steps.

We refer the interested reader to Supplementary Appendix C for details.

Since both Yg and Wg are endogenous variables, we focus on the joint likelihood, i.e.,25

P (Wg, Yg|θg, αg, Zg) = P (Yg|Wg, θg, αg, Zg) · P (Wg|θg, αg, Zg),

where θg = (γ′, η′, δ, λ, β′, ρ′, σ2
ξg

). Note that to describe group heterogeneity on activity out-

comes at both the mean and variance levels, we use αg and σ2
ξg

to capture the group fixed

effect and group heteroskedasticity, respectively. To adhere to the principle of model parsi-

mony, the other coefficients are assumed to be common across groups. Using the parametric

25Of course, assuming independence across groups, the joint likelihood (over all groups) can be written as∏G
g=1 P (Wg, Yg|θg, αg, Zg).
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forms assumed in Section 2.4, we can write:

P (Wg, Yg|θg, αg, Zg) = P (Yg|Wg, θg, αg, Zg) · P (Wg|θg, αg, Zg)

= |Sg(Wg)| · f(ξg|Wg, θg, αg, Zg) · P (Wg|θg, αg, Zg)

= |Sg(Wg)| · f(ξg,Wg|θg, αg, Zg)

= |Sg(Wg)| · f(ξg|θg, αg, Zg) · P (Wg|ξg, θg, αg, Zg)

= |Sg(Wg)| · f(ξg|θg, αg, Zg) ·
exp(V(Wg, ξg, θg, αg, Zg))∑

W̃g∈Ωg
exp

(
V(W̃g, ξg, θg, αg, Zg)

) ,
(12)

where Sg(Wg) = Img −λWg, ξg = Sg(Wg)Yg−Xgβ1−WgXgβ2−Zgρ1−WgZgρ2− lmgαg, and

f(ξg|θg, αg, Zg) = (2π)−
mg
2

(
σ2
ξg

)−mg
2

exp

(
− 1

2σ2
ξg

ξ′gξg

)
.

The main challenge in estimating this model is to compute the denominator in Eq. (12).

As it sums all possible network structures, its direct evaluation is impossible, even for small-

sized networks. For example, in a network with only five individuals, the number of possible

network structures is 25(5−1) = 220.

Hence, any estimation method involving a direct likelihood evaluation is not feasible.

This problem applies to all ERGMs for networks (e.g., Badev, 2018; Chandrasekhar and

Jackson, 2014; Mele, 2017b; Boucher and Mourifié, 2017) and can be traced back to the

spatial analysis in Besag (1974).

To deal with this problem, several estimation methods have been proposed. The first

is the maximum pseudo-likelihood approach (MPL). This approach was first mentioned in

Besag (1974) and later applied to the network study in Strauss and Ikeda (1990). Recently,

Boucher and Mourifié (2017) have shown that the special case of the estimator proposed

in Strauss and Ikeda (1990) can be estimated consistently under an assumption of specific

homophily.

Another approach is the Monte Carlo maximum likelihood (MCML) estimation approach

that simulates auxiliary networks to approximate the denominator of the exponential dis-

tribution function with its simulated counterpart (Geyer and Thompson, 1992). One short-

coming of the MCML approach is that the choice of initial values during the optimization

19



algorithm plays a critical role. The initial values must produce extremely precise estimates

of the parameter values; otherwise, the convergence of the algorithm is not ensured (Bartz

et al., 2009; Caimo and Friel, 2011). The Robbins-Monro approach, used in Snijders (2002)

to simulate auxiliary networks for constructing simulated moments, usually accepts a wide

range of initial values that can lead to a convergent algorithm.

In this paper, we implement a Bayesian estimation approach using an effective MCMC

technique developed to handle the intractable normalizing term in the posterior density func-

tion (e.g., Mele, 2017b). We start by reviewing the intuition behind the general technique.

3.3 General intuition: double M-H algorithm

To clarify the intuition, we will (abusively) use the following simplifying notation: for any

variable Ag, we use the notation {Ag} to represent the collection of variable Ag across G

groups, i.e., {Ag} := (A1, · · · , AG). Now let y = ({Yg}, {Wg}) and θ = ({θg}, {αg}, {Zg}).

From Section 3.2, the likelihood function of y, given θ, has the following form: P (y|θ) =

f(y; θ)/D(θ), where D(θ) is an intractable normalizing term.

The standard M-H algorithm to simulate random draws of θ operates as follows: given

an old draw θold one proposes a new draw θnew from a proposal distribution q(·|θold), and

one then updates the old draw to the new draw with an acceptance ratio αMH(θnew, θold).

Denoting the prior distribution of θ as π(θ), the acceptance ratio is given by:

αMH(θnew, θold) = min

{
1,
P (θnew|y)q(θold|θnew)

P (θold|y)q(θnew|θold)

}
= min

{
1,
π(θnew)f(y; θnew)q(θold|θnew)

π(θold)f(y; θold)q(θnew|θold)
· D(θold)

D(θnew)

}
. (13)

One can see that in Eq. (13), the normalizing terms D(θold) and D(θnew) do not cancel out;

thus the evaluation of the acceptance-rejection criterion in Eq. (13) is intractable.

To solve this problem, Murray et al. (2006) consider including auxiliary variables ỹ into

the acceptance probability, i.e., the acceptance probability can be written as:

αMH(ỹ, θnew, θold) = min

{
1,
π(θnew)P (y|θnew)q(θold|θnew)

π(θold)P (y|θold)q(θnew|θold)
· P (ỹ|θold)
P (ỹ|θnew)

}
= min

{
1,
π(θnew)f(y; θnew)q(θold|θnew)

π(θold)f(y; θold)q(θnew|θold)
· f(ỹ; θold)

f(ỹ; θnew)

}
, (14)
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where ỹ are simulated from the likelihood function P (ỹ|θnew) = f(ỹ; θnew)/D(θnew) with the

exact sampling (Propp and Wilson, 1996).

In the conditional acceptance probability of Eq (14), all normalizing terms cancel out,

and the remaining terms are computable. This algorithm is called the “exchange algorithm”

because a swapping operation between (θold, y) and (θnew, ỹ) is involved (Geyer, 1991). The

exchange algorithm differs from the conventional M-H algorithm by adding a randomization

component into the proposal density; this changes q(θnew|θold) into q(θnew|θold)P (ỹ|θnew).

The exchange algorithm defines a valid Markov chain for simulating from P (θ|y) (Murray

et al., 2006; Liang, 2010; Liang et al., 2016). However, implementing the exchange algorithm

is time-consuming because it requires the exact sampling of ỹ from P (ỹ|θnew). To save com-

putation time, Liang (2010) proposes a “double M-H algorithm” that utilizes the reversibility

condition and shows that when ỹ is simulated by the M-H algorithm—starting from y with

R iterations—the conditional acceptance probability in Eq. (14) can be obtained regardless

of the value of R. This gives the double M-H algorithm an advantage as a small value of R

can be used, thereby removing the need for exact sampling.

Also note that Mele (2017b) suggests similarly the use of the double M-H algorithm in

estimating ERGMs; however, he improves the convergence of the double M-H algorithm

further by mixing the conventional random-walk proposal with other proposals, such as

random-block techniques (Chib and Ramamurthy, 2010), to improve the mixing and con-

vergence of the network simulation.26 With this mixed proposal, Mele (2017b) shows that

simulation of the network can escape from the local maxima in the “low temperature regime”

of the ERGM (Bhamidi et al., 2011) where the mixing is problematic. Given this greater

computational efficiency compared to exact sampling, we adopt the double M-H algorithm,

combined with Mele (2017b)’s improvement for network simulation.

We also provide a technical contribution for the computation of the double M-H algorithm

for our model. Using the double M-H algorithm to update θ from P (θ|y) requires simulating

the auxiliary variable ỹ. In our context, however, the auxiliary activity variables {Ỹg} in ỹ

26 Mele (2017b) uses the term “approximate exchange algorithm” instead of double M-H algorithm in his

paper. He also provides the formal statement of the convergence of the algorithm in Appendix B of his

paper.

21



are redundant during simulation as they can be replaced by either a closed-form function (as

in Eq. (4)) or a contraction mapping (as in Eq. (5)) of auxiliary networks and estimated

individual heterogeneity. Thus, we can simplify ỹ to w̃ = {W̃g} and modify the conditional

acceptance probability in Eq. (14) to:

αMH(w̃, θnew, θold) = min

{
1,
π(θnew)P (y|θnew)q(θold|θnew)

π(θold)P (y|θold)q(θnew|θold)
· P (w̃|θold)
P (w̃|θnew)

}
= min

{
1,
π(θnew)f(y; θnew)q(θold|θnew)

π(θold)f(y; θold)q(θnew|θold)
· f(w̃; θold)

f(w̃; θnew)

}
. (15)

To evaluate α(w̃, θnew, θold) in Eq. (15), we need only to simulate the auxiliary networks

w̃ from their probability density function P (w̃|θnew) = f(w̃; θnew)/D(θnew) that shares the

same normalizing term, i.e., D(θnew) as P (ỹ|θnew).

3.4 Posterior distributions and the MCMC

We now present the MCMC procedure. Although we regard unobserved latent variables {Zg}

as individual random effects, we follow Tanner and Wong (1987) and Albert and Chib (1993)

to proceed with Bayesian data augmentation that treats {Zg} basically as parameters to be

estimated.27 By Bayes’ theorem, the joint posterior distribution of the parameters and

unobservables in the model can be written as:

P ({θg}, {αg}, {Zg}|{Yg}, {Wg}) ∝ π({θg}, {αg}, {Zg}) ·
G∏
g=1

P (Yg,Wg|θg, αg, Zg) , (16)

where π(·) represents the density function of the prior distribution, and we suppress the

dependence of the likelihood function on {Xg} and {Cg} for notational clarity. We discuss

the choice of prior distributions in Section 3.5.

Obtaining draws directly from the joint posterior distribution of Eq. (16) is challenging.

Thus, we block the unknown parameters and latent variables into subgroups and proceed

with the Gibbs sampling. We provide the list of conditional posterior distributions used by

27The idea is that instead of trying to approach the posterior distribution of the parameters θ (i.e.,

P (θ|y) =
∫
Z
P (θ|y, Z)P (Z), where P (θ|y, Z) ∝ P (y|Z, θ)π(θ)), we try to approach the posterior distribution

of the parameters and the latent variables Z (i.e., P (θ, Z|y) ∝ P (y|Z, θ)π(θ, Z)). It turns out that this

is much easier for simulating draws. Moreover, the posterior distribution of θ can simply be recovered by

integrating over Z, i.e., p(θ|y) =
∫
Z
P (θ, Z|y).
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the Gibbs sampler in the Supplementary Appendix C. A subset of the parameters admit

close-form conditional posterior distributions; therefore, they can be drawn directly to im-

prove convergence. However, this is not true for most parameters, and we must therefore

use the double M-H algorithm discussed in Section 3.3 to draw from these conditional pos-

terior distributions. Tierney (1994) and Chib and Greenberg (1996) have shown that the

combination of Markov chains (Metropolis-within-Gibbs) remains a Markov chain with the

invariant distribution being the correct objective distribution.

To understand the general approach and to compare our algorithm with the literature,

we first present a pseudo-MCMC algorithm, highlighting the main double M-H steps of

our formal and full MCMC algorithm. The presentation of the pseudo-MCMC allows us

to present the main steps of the formal algorithm without introducing heavy notation and

computational details. The formal and full MCMC algorithm—with one left-censored and

one uncensored activity—is presented in Supplementary Appendix C.

Algorithm 1 (Pseudo-MCMC). In each iteration t, given θ(t−1) = {θ(t−1)
g , α

(t−1)
g , Z

(t−1)
g }

from the previous iteration, perform the following double M-H steps sequentially for each

group g = 1, ..., G and for any variable Ξg ∈ θ:

(a) Propose Ξ̃g from q(Ξg|Ξ(t−1)
g ).

(b) Compute the residuals ξ̃g from the activity intensity equation conditional on the proposed

Ξ̃g and the value of the other unknown parameters and variables at iteration t−1, i.e.,

(θ \ Ξg)
(t−1).

(c) Simulate auxiliary network W̃g. Set the initial auxiliary network equal to the observed

network W̃
(0)
g = Wg. Conditional on ξ̃g, Ξ̃g, and (θ \ Ξg)

(t−1), use R repetitions of the

following procedure:28

(i) local update: for all ij, where j 6= i, propose w̃
(r)
ij,g = 1 − w̃(r−1)

ij,g . Accept w̃
(r)
ij,g with

28The similar local and global updates are suggested in Snijders (2002) and Mele (2017b) to improve the

convergence of graph sampling, particularly when the graph distribution exhibits a bimodal shape, one mode

having low and the other high graph densities. In practice, we set R = 2 and the probability of global update

Pinv = 0.01 in the following simulation and empirical studies.
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the probability

αMH,local(w̃
(r)
ij,g, w̃

(r−1)
ij,g ) = min

{
1,

P (w̃
(r)
ij,g, W̃

(r−1)
−ij,g |ξ̃g, Ξ̃g, (θ \ Ξg)

(t−1))

P (w̃
(r−1)
ij,g , W̃

(r−1)
−ij,g |ξ̃g, Ξ̃g, (θ \ Ξg)(t−1))

}
, (17)

otherwise, set w̃
(r)
ij,g = w̃

(r−1)
ij,g .

(ii) global update: with probability Pinv, propose W̃
(r)
g which inverts the entire adja-

cency matrix, i.e., W̃
(r)
g = lmg l

′
mg − Img −W̃

(r−1)
g . Accept W̃

(r)
g with the probability

αMH,global(W̃
(r)
g , W̃ (r−1)

g ) = min

{
1,

P (W̃
(r)
g |ξ̃g, Ξ̃g, (θ \ Ξg)

(t−1))

P (W̃
(r−1)
g |ξ̃g, Ξ̃g, (θ \ Ξg)(t−1))

}
, (18)

otherwise, set W̃
(r)
g = W̃

(r−1)
g .

(d) Set Ξ
(t)
g equal to Ξ̃g with the probability

αMH,Ξg(w̃, Ξ̃g,Ξ
(t−1)
g )

= min

{
1,

π(Ξ̃g)P (y|Ξ̃g, (θ \ Ξg)
(t−1))q(Ξ

(t−1)
g |Ξ̃g)

π(Ξ
(t−1)
g )P (y|Ξ(t−1)

g , (θ \ Ξg)(t−1))q(Ξ̃g|Ξ(t−1)
g )

· P (w̃|Ξ(t−1)
g , (θ \ Ξg)

(t−1))

P (w̃|Ξ̃g, (θ \ Ξg)(t−1))

}
,

(19)

otherwise, set Ξ
(t)
g = Ξ

(t−1)
g .

Note that Step (c) of Algorithm 1 represents the simulation of the auxiliary variable

w̃ = {W̃g} discussed in Section 3.3. It is worth noting that some authors have used similar

estimation strategies. For example, Mele (2017b) uses a special case of Algorithm 1 where

θ = {θg} and Step (b) is left out. Note also that Algorithm 1 can be adapted to the case

where yi,d is left-censored. To do so, one only has to incorporate the additional latent variable

Ÿg to the list in Ξg. The formal algorithm is presented in Supplementary Appendix C.

3.5 Prior distributions

We assume independence across prior distributions of common parameters, group effects,

and latent variables, namely π(θ) = π1({θg})π2({αg})π3({Zg}). Corresponding to the Gibbs

sampling that divides parameters in {θg} properly into subgroups, we define prior distribu-

tions for parameters and other unknown variables in the model as follows:
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(i) Latent variables in both network formation and activity intensity equations,

zi,g|µz,g ∼ N¯̀(µz,g, I¯̀) and µz,g ∼ N¯̀(0, ςI¯̀) i = 1, · · · ,mg; g = 1, · · · , G.

(ii) Coefficients of network formation utility,

φ = (γ′, η′, δ) ∼ N2s̄+q̄+¯̀+h̄+1(φ0,Φ0I2s̄+q̄+¯̀+h̄+1),

φ ∈ O = {φ ∈ R2s̄+q̄+¯̀+h̄+1||γ41| ≥ |γ42| ≥ · · · ≥ |γ4¯̀|, δ ≥ 0}.

(iii) Coefficients of endogenous effect in the activity intensity equation,

λ ∼ U [−1/∆G, 1/∆G].

(iv) Coefficients of own and contextual effects in the activity intensity equation,

β ∼ N2k(β0, B0I2k).

(v) Coefficients of own and contextual correlated effects in the activity intensity equation,

ρ ∼ N2¯̀(ρ0, R0I2¯̀).

(vi) Variance of disturbances in the economic activity equation,

σ2
ξg
∼ I G (κ0

2
, ν0

2
), g = 1, · · · , G.

(vii) Group fixed effects in the activity intensity equation,

αg ∼ N (α0, A0), g = 1, · · · , G.

Most of the above prior distributions are conjugate priors used commonly in the Bayesian

literature. However, following Hsieh and Lee (2016) and Hsieh and Van Kippersluis (2018),

we set up a hierarchical prior for zi,g. That is, we assume zi,g is normally distributed having a

unit variance and a prior mean equal to µz,g, reflecting the identification restrictions on zi,g, as

presented in Section 2.4. Then, we further assume that µz,g is normally distributed having a

hyperprior mean of zero and a hyperprior variance of ς. As a result, latent variables {Zg} only

add G “real” parameters ({µz,g}) into the estimation procedure (excluding their coefficients

γ4s).

Note that the prior of φ is constrained to a parameter space O in which |γ41| ≥ |γ42| ≥

· · · ≥ |γ4¯̀| for the identification of latent variables Z. We also assume that δ is non-negative to

maintain the coherence with our microeconomic model. The prior on λ is also constrained on

[−1/∆G, 1/∆G], where ∆G = maxg ‖Wg‖∞, to ensure that Proposition 1 holds and that the
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equilibrium is always unique and generates a well-defined data generating process (Kelejian

and Prucha, 2010). The use of a uniform prior follows Smith and LeSage (2004).

The prior of σ2
ξg

is specified as an inverse Gamma (I G ) distribution with the shape

and scale parameters governed by κ0
2

and ν0
2

. In the specification of (vii), we treat the

group effects αg as fixed effects with the hyperparameters α0 and A0 fixed in their prior

distributions. The distinction between fixed and random effects in a Bayesian approach lies

on prior assignment at the second and third levels of hierarchy (Lancaster, 2004; Rendon,

2013). For a fixed-effect model, a Bayesian approach updates distributions of fixed-effect

parameters, whereas a random-effect model updates distributions of hyperparameters in the

prior distribution of random-effect parameters. If it is preferred to model the correlation

between covariates and group effects explicitly, one may follow Mundlak (1978) to have a

correlated random-effect specification that allows the mean of the random effect (i.e., the

mean hyperparameter in the prior distribution of the random effect) to be a linear function

of covariates (e.g., Boucher and Goussé,2019). To determine if there is any impact due to the

specification of random group effects, we also examine the estimation results of our model

based on the correlated random-effect specification for a robustness check.29

4 Simulation study

In this section, we conduct a simulation study to examine the finite sample performance of

the Bayesian MCMC sampler proposed in Section 3. The simulation study is designed to

accommodate four different purposes.

First, we carry out a Monte Carlo experiment (with 100 repetitions) to demonstrate

that the MCMC sampler can successfully recover the true parameters from the artificially

29We specify αg as follows:

αg = Xgβ3 + Zgρ3 + ζg, ζg ∼ N (0, σ2
α,c),

where Xg and Zg are, respectively, the group averages of Xg and Zg. The β3, ρ3, and σ2
α are unknown

parameters, and we also specify prior distributions for them such that β3 ∼ Nk(β0, B0Ik), ρ3 ∼ N¯̀(ρ0, R0I¯̀),

and σ2
α ∼ I G (κ0

2 ,
ν0
2 ). As a result, we form a hierarchical prior for αg where the prior mean and the prior

variance of αg follow other prior distributions.
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generated network data. Second, the same Monte Carlo experiment is used to show the issue

of model misspecifications and the consequent estimation biases. Third, using samples from

one simulation repetition, we begin the MCMC sampler with different initial values to see if

the Markov chains converge toward the true values within a reasonable amount of draws, i.e.,

examining the issues of non-convergence and the slow mixing of the Markov chain. Fourth,

we also report the computation time required by network samples of different sizes to offer

users additional information on the feasibility of our approach when applied to their own

network data.

We design the data generating process (DGP) throughout the simulation based on the

exponential distribution of Eq. (6). Continuous (uncensored) activity variables are generated

by the activity intensity equation of Eq. (7), and the censored activity variables are generated

by Eq. (5). We set the network size for the uncensored case at 30 and the censored case at

40—to compensate the loss of information due to censoring—and fix the number of networks

at 30, i.e., there are 900 and 1,200 individual observations for the uncensored and censored

cases, respectively, at each simulation repetition.

In the activity intensity equations, we generate the exogenous variable X from a normal

distribution N (0, 4). The group fixed effects are generated from N (3, 1) for the uncensored

case and N (−1.5, 1) for the censored case. The disturbance term ξ is generated from

N (0, 0.5). The latent variable Z is specified as one dimensional and generated from N (0, 1).

For the other effects on network formation, the local network effect is specified based on

Eq. (9). We include a constant term and a dyad-specific exogenous variable Cij that is

generated as follows: first, we draw two uniform random variables from U(0, 1), denoted as

U1 and U2. If U1 and U2 are both larger than 0.7 or less than 0.3, then we set Cij to one.

Otherwise, we set Cij to zero. We also include the distance of latent variables |zi−zj| as part

of the local network effect. The global network effects are specified according to Eq. (10).

All true parameter values of the DGP are reported in the second column of Tables 1 and 2.

Each artificial network W is simulated by the M-H algorithm from an empty network

based on the exponential distribution of Eq. (6). The following steps are implemented it-

eratively corresponding to the local and global updates in Step (c) of the pseudo-MCMC

algorithm in Section 3.4. Activity intensity variables are simulated along with networks. The
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M-H algorithm runs through the entire network for a total of 10,000 iterations, and realiza-

tions of the network and the activity intensity variables from the last iteration are used as

the data. The networks generated out of the design have an average out-degree of 3.6978 for

the uncensored case and 2.6458 for the censored case; the average density is 0.1275 (uncen-

sored) and 0.0678 (censored), and the average clustering coefficient is 0.0493 (uncensored)

and 0.0263 (censored).30 These network statistics are comparable to those of the empirical

samples in Section 5. The generated uncensored activity variable has a mean of 4.0767,

and the censored variable has a mean of 1.1923. A total of 21.67% of the observations are

censored.

To estimate the model, a total of 50,000 draws were simulated using the double M-H

algorithm discussed in Section 3.3. The values of hyperparameters in the prior distributions

are set as follows: φ0 = 0; Φ0 = 10; β0 = 0; B0 = 10; ρ0 = 0; R0 = 10; σ0 = 0; Σ0 = 10;

α0 = 0; A0 = 400. These specified values of hyperparameters are chosen to form very

flat prior densities over the range of parameter spaces so that estimation results are less

influenced by our choice of priors. We discard the first 10,000 draws and use the remaining

40,000 draws to compute the posterior mean as a point estimate. We now summarize our

findings from the simulation study.

First, we report the Monte Carlo simulation results for uncensored and censored activities

in Tables 1 and 2, respectively. For both activity cases, we find that the proposed Bayesian

estimation can recover successfully the true parameter values when the correct model—“full”

model—is used. We also estimate four misspecified models: the “no latent” model that

ignores the latent variable from network formation and activity intensity; the “no global”

model that ignores the global network effects from network formation; the ‘latent only” model

that only includes the latent variable; and the “activity only” model that regards networks

as exogenously given and only estimates the activity intensity equation. The results reveal

30The out-degree for individual i is calculated by
∑
j wij,g. The average out-degree is

∑
i

∑
j 6=i wij,g/mg.

The network density is obtained by further dividing the average degree by (mg−1). The clustering coefficient

is calculated as the total fraction of transitive triples in the network, i.e.,

C(Wg) =

∑
i;j 6=i;k 6=i,j wij,gwjk,gwik,g∑

i;j 6=i;k 6=i,j wij,gwjk,g
.
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different levels of estimation biases in these misspecified models.

When ignoring the latent variable, the “no latent” results show significant upward biases

of the endogenous peer effect (λ) and some of the global network effects (e.g., η1, η2, and η5),

and there is a significant downward bias on the incentive effect (δ). This result demonstrates

that omitting latent variables that affect both activity intensity and network formation not

only causes an upload bias on the estimate of endogenous peer effect (Hsieh and Lee, 2016),

but also biases the estimates of other network effects.

When ignoring the global network effects, the “no global” results show that the estimated

incentive effect confounds with the uncontrolled global network effects and becomes upward

biased. Meanwhile, since the incentive and endogenous peer effects are highly interdependent

through the activity intensity, the upward bias on the estimated incentive effect therefore

leads to the downward bias on the estimated endogenous peer effect. These results reveal

the necessity of controlling the global network effects in our network formation model.

When ignoring the global network effects and the incentive effect, the estimate of en-

dogenous peer effect is also upward biased in the “latent only” results. This highlights the

importance of the new avenue explored with our network formation model, i.e., the incentive

effect, in which the issue of network endogeneity on social interactions can be formulated

as well as adding to the existing literature related to joint-modeling network formation and

the interactions with latent variables (Goldsmith-Pinkham and Imbens, 2013; Hsieh and Lee,

2016; Johnsson and Moon, 2016). Finally, the results of the “activity only” model display the

most severe upward bias on the endogenous peer effect among the four misspecified models

due to uncontrolled network endogeneity.

Next, we inspect the convergence of the Markov chain in our Bayesian MCMC estimation

under different initial values to determine if there are issues of non-convergence and slow

mixing. To implement this inspection, we take the network and activity samples from the first

simulation repetition of the above Monte Carlo experiment and estimate the true model with

the proposed MCMC procedure in Section 3.3. We focus on the two important parameters of

the model—the endogenous peer effect (λ) and the incentive effect (δ)—for the inspection and

assign different initial values to begin the MCMC sampling. To keep the exercise tractable,

we let the sampling of other parameters begin with the true values.
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For illustration purposes, we consider the case of uncensored activity and present the

results of inspection by the trace plots of MCMC draws in Figure 3 and Figure 4. The plots

for the case of censored activity are relegated to the Supplementary Appendix Figures E.1

and E.2.

To interpret these trace plots, we take the endogenous peer effect λ in Figure 3 as an

example. The true value of λ in the simulation is set at 0.05 (see Table 1). Accordingly, we

assign five evenly spaced values between 0 and 0.1, namely 0, 0.025, 0.05, 0.075, and 0.1, to

start the MCMC sampling. With these five different initial values, we run five independent

MCMC samplings (for all parameters) and plot the first 5,000 draws of λ in each chain. The

plots in Figure 3 show that regardless of the different initial values, the draws of λ converge

and stabilize swiftly near the true values. We also find a similar pattern in the other figures

for λ in the censored outcome and for δ in both the censored and uncensored outcomes; this

occurs despite the convergence of δ requiring slightly more draws than λ.31

Finally, we use this simulation environment to illustrate the computational cost of our

estimation algorithm. We focus on the case of uncensored activity and generate artificial

data with different network sizes of 20, 40, 60, 80, and 100. We fix the number of network

groups at 30 given that the number of groups is less of a concern for computation because

we can easily digest the cost of many groups by applying the parallel computation at the

group level.

In Figure 5, we show the computation cost, measured by the average CPU time (in

seconds) of one MCMC iteration for the five studied models (in Table 1); these models include

the full model, three nested network formation models, and the activity intensity equation

alone. This timing task is done using a desktop PC having an Intel i7-6700 CPU (4.00 GHz).

We see that the computational cost increases exponentially with network size whenever

estimation of the corresponding model requires the double M-H algorithm. Taking the

median network size (60) in this simulation—which is also close to the average network size

in the empirical study of Section 5—as a reference, completing the estimation of the full

model with 100,000 MCMC iterations will require roughly 155 hours, a manageable amount

31The draws of λ and δ have posterior means close to but not exactly equal to the true parameter values.

This occurs as we use only the sample from one simulation repetition, and therefore sampling error exists.
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of time.

5 Empirical applications: friendship networks, academic

outcomes, and smoking behaviors

We present an empirical application of our model on American high school students’ friend-

ship networks within the Add Health data, a national survey based on 132 schools, covering

grades 7 through 12 (Udry, 2003). Five waves of the survey were conducted between 1994

and 2018. In the wave I in-school survey, a total of 90,182 students were interviewed.

Respondents answered questions regarding their demographic backgrounds, academic per-

formances, and health-related behaviors. Most uniquely, students were asked to nominate

up to five male and five female friends. This provides detailed information related to their

friendship networks.

The different waves’ of in-home surveys of the Add Health project ask a greater amount of

information about students’ families and neighborhoods; however, this information is usually

only recorded for a subset of individuals. To include most of the students’ nominated friends

and to mitigate as much as possible sampling biases (e.g., Chandrasekhar and Lewis, 2011;

Liu, 2013), we use the wave I in-school survey.

We consider two types of activities that may be subject to social interactions and that are

relevant for friendship formation.32 The first is the student’s academic performance (mea-

sured by GPA), which is represented by a continuous (uncensored) variable. The second is

the student’s smoking habit, or more precisely, how frequently a student smokes in a typical

week. The latter variable is represented by a censored variable as we do observe a significant

fraction of non-smokers.

In the context of social interactions, students’ academic performance and smoking be-

havior are studied extensively as they have important long-term consequences on students’

32Discussions about how academic performance and smoking affect friendship selections can be found in,

e.g., Kiuru et al. (2010), Lomi et al. (2011), Flashman (2012), Schaefer et al. (2013). Other activities may

affect friendship choices. We focus on academic performance and smoking because they are the key subjects

of interest discussed in social interaction studies.
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future lives and health. Studies of peer effects on students’ academic performance, e.g.,

Hoxby (2000), Sacerdote (2001), Hanushek et al. (2003), and Zimmerman (2003) use the

linear-in-means model; whereas Calvó-Armengol et al. (2009), Lin (2010), Boucher et al.

(2014), and Liu et al. (2014) use the network interactions model. For studies of peer effects

on students’ smoking behaviors, evidence of peer effects can be found in Gaviria and Raphael

(2001), Powell et al. (2005), Lundborg (2006), Clark and Lohéac (2007), Fletcher (2010),

and Hsieh and Van Kippersluis (2018).

When studying interaction (peer) effects, researchers face a difficulty in identifying cor-

related effects from group-level unobservables and endogenous selection into groups, as well

as separating the endogenous interaction effect from contextual effects in a linear model (the

reflection problem of Manski (1993)). Using various approaches (e.g., randomization, fixed

effects, etc.) to avoid these difficulties, researchers generally produce evidence for the exis-

tence of peer effects.

Hsieh and Lee (2016) consider further the problem of endogenous friendship selection of

peer effects on economic activities by modeling unobservables in both the network interaction

and network formation processes. They find that the endogenous effect on academic per-

formance obtained from a SAR model without controlling for the endogeneity of the spatial

weight matrix can be upward biased.

In this paper, we follow Hsieh and Lee (2016) in controlling individual unobservables in

the formation of friendship networks and activity outcomes. Furthermore, we investigate the

incentive effects of activities in network formation and find that the benefit of interactions

from academic learning is an important factor when students form friendships.

5.1 Data summary

As mentioned previously, we use the Add Health wave I in-school survey dataset in which all

students in the sampled schools were expected to participate. We let each school be a group,

and we ignore friendship relations between schools. Although there could still be network

measurement errors due to students’ absences, refusal to cooperate, etc., when compared to

the strategies relying on in-home surveys or defining network groups at the grade level, the

issue of missing links in our study is minimized. However, to ease the computation burden,
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we restrict our sample to those small schools having student sizes less than 120.

This school-level sample is particularly well adapted to our study since it is very likely

that students know each other. As discussed in Section 2, we assume that friendships are

formed conditional on side payments. Students must therefore be sufficiently aware of one

another as to be able to pay those transfers.

The final sample comprises a total of 1,036 respondents from 15 schools (groups).33 The

school networks have an average size of 69.29, an average density of 0.076, an average out-

degree of 3.752, and an average clustering coefficient of 0.095. Since the average out-degree

is far below its top-coded value (at 10), the threat of missing links due to the fixed survey

design (Kossinets, 2006) could be ignored.

To capture the local network effects in Eq. (9), we include an individual-specific variable

denoting how many years a student has spent in his or her school as well as three dummy

variables: whether a pair of students are of the same age, sex, or race. For the variables used

in the activity intensity equation of Eq. (8), the continuous (uncensored) activity outcome,

GPA, is calculated using the average of a respondent’s reported grades from several subjects,

including language, social science, mathematics, and science (each of which each has a value

between 1 and 4). The average GPA in the sample is 3.059. The censored activity variable,

smoking, is obtained from the student’s response to the survey question, “During the past

twelve months, how often did you smoke cigarettes?”; the response has a value between 0

and 7. The average smoking frequency is 0.543 with 73.26% of observations censored at zero.

We follow Lin (2010), Lee et al. (2010), and Hsieh and Lee (2016) to choose the independent

variables. A complete list of variables and their summary statistics are provided in Table 3.

5.2 Estimation results

In this empirical study, we specify our full model with the incentive effects from both ac-

tivity outcomes—GPA and smoking. As discussed in Section 2.2, despite our assumption of

33To clarify, we do not use the Add Health saturation sample (Udry, 2003) having 16 schools. In the

saturation sample, all enrolled students in the schools were selected for in-home interviews; thus, it is an

ideal sample if information from in-home interviews is needed. However, since we do not use any variables

from the in-home survey, we do not use the saturation sample.
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conditional separability, omitting a relevant activity would likely bias the estimation. We

therefore proceed to estimate the multiple-activity model. Separate estimations for the two

single-activity models are provided in Supplementary Appendix Tables E.3 and E.4.34 In

addition, modeling multiple activity outcomes allows us to explicitly control the correlation

of the error terms between the activity intensity equations.

Similar to the simulation study in Section 4, we compare the estimation results of the full

model with the results of several possibly misspecified models to see how each model mis-

specification affects estimates of the full model, particularly for the estimate of endogenous

peer effect (λ) on activity outcomes. We present the estimation results in Table 4. From

the first to the fifth columns respectively, they are the results of the full model, the model

without the latent variables, the model without the global network effects, the model with

only latent variables, and the activity intensity equation alone assuming exogenous network

links.35

Network formation

The results from local network effects in the full model are as follows. Staying in a same

school for a longer time has a significant positive effect on receiving (but a negative effect on

sending out) friendship nominations. The exogenous dyad-specific effects are all positive and

significant, where the effect of the same age (0.3675) is strongest, followed by the effect of the

same sex (0.3471), and then the effect of the same race (0.3116). We find that the distances

of latent variables have significant negative effects on network formation, confirming the

existence of homphily with respect to unobservables (Hoff et al., 2002; Goldsmith-Pinkham

and Imbens, 2013; Hsieh and Lee, 2016).36

34Comparing the results of the multiple-activity model in Table 4 with the results of the single-activity

models in Supplementary Appendix Tables E3 and E4, we find that the latent variables in the local network

effects in single-activity models have smaller estimated coefficients. Also, the estimated incentive effect from

smoking is higher, and the estimated endogenous effect on smoking is lower in the single-activity model

compared to the values in Table 4. These differences illustrate the potential concern of having omitted-

variable biases when activity outcomes are modeled separately.
35In Table 4, the mean and the standard deviation (in parentheses) of the MCMC posterior draws are

reported as the point estimate of each parameter. We set the hyperparameters in the prior distributions to

be identical to those used in the simulation study presented in Section 4.
36 Because the exact likelihood value for the full model in Eq. (12) is unavailable due to the intractable
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For the global network effects, we find a positive and strong reciprocity effect (1.4309),

which is consistent with findings in the literature (Snijders et al., 2010; Badev, 2018; Mele,

2017a). This reflects the fact that mutual friendship nominations among students are still

common (45.64% of friendship links) in our sample. The congestion effect is concave on in-

dividual’s out-degree. Indeed, the linear effect is positive (0.2699), while the quadratic effect

is negative (-0.0247). This result confirms our conjecture that limited resources, e.g., time,

energy, and money, may constrain students from making too many friends. The popularity

effect is small (0.0049) and insignificant.

The positive and strong transitive-triads effect (0.4715) shows that students value tran-

sitive relationships. As expected, the three-cycles effect is negative (-0.2071). As discussed

in Snijders et al. (2010), this reveals a certain degree of local hierarchy among students. Our

estimated results of the global network effects confirm that there are non-trivial negative ex-

ternalities on link formation that distinguish our model from the Erdös-Rény random graph

model.

The incentive effect from GPA (0.2145) is strong and significant. Therefore for high

school students in our sample, the potential interaction benefit from their friends’ academic

achievement influences their friendship decisions. In contrast, the incentive effect from smok-

ing (0.0197) is small and insignificant. Hence, it implies that students in our sample barely

consider the interaction benefit from smoking as a factor in their friendship decisions.

Network interactions on GPA

Our main finding for the network interactions on academic performance is that, by con-

trolling network endogeneity through the latent variables and the incentive effect, the es-

denominator, we cannot directly apply the likelihood-based model selection criteria to choose the number

of latent dimensions in the full model. Alternatively, we determine the latent dimensions based on the

model in which the global network effects and the incentive effects are taken away. When there are no

global network effects or incentive effects in the network formation model, each link becomes conditionally

independent given the latent variables. In that case, the likelihood value can be computed, and we can apply

the Akaike’s information criterion - Monte Carlo (AICM) as proposed by Raftery et al. (2007) to choose the

latent dimension (Hsieh and Lee, 2016). We report the estimation results for that model having one to four

latent variable dimensions and the corresponding AICM values. Dimension three is chosen due it having the

smallest AICM value.
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timated endogenous effect on GPA drops from 0.0330 in the activity intensity equation

alone (fifth column) to 0.0177 in the full model (first column). This highlights the effective-

ness of our joint modeling approach for correcting the selection bias inherited in the activity

intensity equation.

We interpret this estimated endogenous peer effect as follows. Through interactions, an

individual could raise their GPA by 0.0177 units when any of his or her friends improves

their own GPA by one unit. Also note that this effect grows with the number of friends.

The more friends that an individual has, the stronger the effect they receive. This estimate

also implies that the social multiplier effects, as measured by elements of (Img − λWg)
−1lmg

between individuals and groups, have an average of 1.0683 and a standard deviation of

0.0546.

Results from the second to the fourth columns in Table 4 show that correction of bias

comes from both the incentive effect and the unobserved latent characteristic variables.

When the model only contains the latent variables (see the results in the fourth column),

only 59.48% of the observed bias is corrected.37 When the model only controls for the

incentive effect (see results in the second column), we correct for 92.16% of the observed

bias. Our empirical results confirm the findings of the simulation study in Section 4 that

omitting the global network effects from the network formation model can result in an upward

bias on the estimated incentive effect (see results in the third column) and thus indirectly

cause pressure on biasing the estimated endogenous peer effect downwards.

For the contribution of individual characteristics, we observe that students who are older,

male, Hispanic, of other races, having a mother’s education level as missing or lower than a

high-school level, having a mother’s occupation as missing or as a professional, or having a

mother that participates in social welfare programs tend to have lower GPA scores. On the

contrary, students who live with both parents or that have a mother having an education

level higher than high school tend to have a higher GPA. We also see that one latent variable

shows a significant positive effect on GPA. The estimates of contextual effects for students

that are either Black, Asian, other race, living with both parents, have a mother with less

37This percentage is obtained by dividing the difference of estimated λ’s between the fourth and the fifth

columns with the difference of estimated λ’s between the first and the fifth columns.
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than a high-school level of education, or that have received welfare are found to be positively

significant. The estimates of the contextual effects for mothers having greater than a high-

school level of education or missing education levels are found to be positively significant in

the full model.

Network interactions on smoking For the smoking outcome, we observe that the esti-

mated endogenous (peer) effect drops from 0.1125 in the activity intensity equation alone (fifth

column) to 0.1052 in the full model (first column). The smaller selection bias for smoking

(as opposed to GPA) is likely due to the small incentive effect for smoking.

We nonetheless see that the correction of the bias is largely due to the inclusion of latent

variables (comparing the fourth column with the fifth column) rather than the inclusion

of the incentive effect (comparing the second column with the fifth column). Our estimate

implies that the social multipliers have a respective average and standard deviation of 1.9692

and 1.2002.

The effects of individual characteristics show that students who are either Black, Asian,

have a mother’s education level higher than high school, or have more school-age children

at their home tend to smoke less than their school counterparts. On the contrary, students

who are either older, Hispanic, having mothers that have less than a high-school level ed-

ucation, having mothers that participate in welfare programs, or having mothers that have

professional jobs or missing job information tend to smoke more than others. For contextual

effects, a student may smoke more if they are surrounded by more friends who are Black,

Asian, or other races. A student may smoke less if they have friends whose mothers par-

ticipate in welfare programs. For the estimated covariances of disturbances in the outcome

equations between GPA and smoking, we find the values are generally negative with an

average of -0.2522 and standard deviation of 0.2708.

Finally, as an additional robustness check, we estimate the model with correlated random

group effects in activity intensity equations, as discussed in Footnote 29 of Section 3.5. The

estimation results are available in Supplementary Appendix Table E.1. We find the coefficient

estimates of local, global network effects and the incentive effects, and the endogenous peer

effects in the activity intensity equations remain similar to those in Table 4. Since all of the
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group averages on Xg and Zg used in capturing the mean of correlated random effects have

insignificant effects, there are also no significant changes of the estimated own and contextual

effects. As a result, our estimation results are robust between the fixed and random group

effect settings.

6 Conclusion

Researchers are interested in network structures to analyze the impact of these structures on

outcomes. As mentioned in Jackson (2010, Section 5), if networks only serve as conduits for

diffusion, e.g., diseases or ideas, their impact on outcomes is somewhat mechanical, and one

need not worry about any feedback effects from outcomes. However, for studying the impact

of a friendship network on outcomes, both the network structure and strategic interactions

between the network and outcomes should be considered. This extra consideration should

be reflected in a dynamic or static equilibrium model.

In this paper, we propose a static equilibrium model that accounts for these features.

We present a complete information game in which students respond to incentives stemming

from their interactions with friends that in turn affect their friendship decisions. We also

allow for unobserved individual characteristics in network formation outcome equations.

Our empirical results show that American high school students regard the interaction

benefit from academic learning as a significant incentive for forming friendships, whereas

the incentive effect of smoking is not significant. Another novelty of our approach to the

social interaction literature is to present a model that allows correcting for possible friendship

selection biases in activity outcomes that can be attributed to the specification of incentive

effects, latent characteristic variables, or both.

Some issues that are not emphasized in this paper remain important for future extensions.

First, we focus on a complete information setup. If this assumption is appropriate for a school

setting, it is likely questionable in other economic contexts.

Second, we abstract from outcome games using multiple game equilibria. In the paper, we

circumvent this issue by focusing on continuous outcome variables. In a multiple-equilibria

setting, one could either provide an equilibrium selection rule or characterize the estimation
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problem with moment inequalities.

Finally, an interesting way forward would be to apply our model to the study of other

types of networks, e.g., criminal networks, physician referral networks, or academic coauthor

networks.
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(2011) “Why are some more peer than others? Evidence from a longitudinal study of

social networks and individual academic performance,” Social Science Research, Vol. 40,

pp. 1506–1520.

Lundborg, Petter (2006) “Having the wrong friends? Peer effects in adolescent substance

use,” Journal of Health Economics, Vol. 25, pp. 214–233.

Manski, Charles F (1993) “Identification of endogenous social effects: The reflection prob-

lem,” Review of Economic Studies, Vol. 60, pp. 531–542.

McCormick, Tyler H and Tian Zheng (2015) “Latent surface models for networks using

Aggregated Relational Data,” Journal of the American Statistical Association, Vol. 110,

pp. 1684–1695.

Mele, Angelo (2017a) “Segregation in social networks: a structural approach,” Available at

SSRN 3058985.

(2017b) “A structural model of Dense Network Formation,” Econometrica, Vol. 85,

pp. 825–850.

(2017c) “A structural model of homophily and clustering in social networks,” Avail-

able at SSRN: https://ssrn.com/abstract=3031489.

Mele, Angelo and Lingjiong Zhu (2017) “Approximate variational estimation for a model of

network formation,” arXiv preprint arXiv:1702.00308.

Miyauchi, Yuhei (2016) “Structural estimation of pairwise stable networks with nonnegative

externality,” Journal of Econometrics, Vol. 195, pp. 224–235.

Mundlak, Yair (1978) “On the pooling of time series and cross section data,” Econometrica,

Vol. 46, pp. 69–85.

Murray, Iain, Zoubin Ghahramani, and David MacKay (2006) “MCMC for doubly-

intractable distributions,” in Proceedings of the 22nd Annual Conference on Uncertainity

in Artificial Intelligence: UAI.

47



Patacchini, Eleonora and Yves Zenou (2008) “The strength of weak ties in crime,” European

Economic Review, Vol. 52, pp. 209–236.

(2012) “Juvenile delinquency and conformism,” Journal of Law, Economics, and

Organization, Vol. 28, pp. 1–31.

Powell, Lisa M, John A Tauras, and Hana Ross (2005) “The importance of peer effects,

cigarette prices and tobacco control policies for youth smoking behavior,” Journal of Health

Economics, Vol. 24, pp. 950–968.

Propp, James Gary and David Bruce Wilson (1996) “Exact sampling with coupled Markov

chains and applications to statistical mechanics,” Random structures and Algorithms, Vol.

9, pp. 223–252.

Raftery, A. E., M. A. Newton, J. M. Satagopan, and P. N. Krivitsky (2007) “Estimating the

integrated likelihood via posterior simulation using the harmonic mean identity,” Bayesian

Statistics, Vol. 8, pp. 1–45.

Rendon, Silvio R (2013) “Fixed and random effects in classical and Bayesian regression,”

Oxford Bulletin of Economics and Statistics, Vol. 75, pp. 460–476.

Sacerdote, Bruce (2001) “Peer effects with random assignment: results for Dartmouth room-

mates,” Quarterly Journal of Economics, Vol. 116, pp. 681–704.

Schaefer, David R, Steven A Haas et al. (2013) “Social networks and smoking exploring the

effects of peer influence and smoker popularity through simulations,” Health Education &

Behavior, Vol. 40, pp. 24S–32S.

Sheng, Shuyang (2014) “A structural econometric analysis of network formation games,”

working paper.

Smith, Tony E and James P LeSage (2004) “A Bayesian probit model with spatial depen-

dencies,” Advances in Econometrics, Vol. 18, pp. 127–160.

48



Snijders, Tom A., Gerhard G. Van de Bunt, and Christian E. Steglich (2010) “Introduction

to stochastic actor-based models for network dynamics,” Social Networks, Vol. 32, pp.

44–60.

Snijders, Tom AB (2001) “The statistical evaluation of social network dynamics,” Sociological

Methodology, Vol. 31, pp. 361–395.

(2002) “Markov chain Monte Carlo estimation of exponential random graph mod-

els,” Journal of Social Structure, Vol. 3, pp. 1–40.

Snijders, Tom AB, Philippa E. Pattison, Garry L. Robins, and Mark S. Handcock (2006)

“New specifications for exponential random graph models,” Sociological Methodology, Vol.

36, pp. 99–153.

Soetevent, Adriaan R and Peter Kooreman (2007) “A discrete-choice model with social in-

teractions: with an application to high school teen behavior,” Journal of Applied Econo-

metrics, Vol. 22, pp. 599–624.

Strauss, David and Michael Ikeda (1990) “Pseudolikelihood estimation for social networks,”

Journal of the American Statistical Association, Vol. 85, pp. 204–212.

Tanner, Martin A and Wing Hung Wong (1987) “The calculation of posterior distributions

by data augmentation,” Journal of the American statistical Association, Vol. 82, pp. 528–

540.

Tierney, Luke (1994) “Markov chains for exploring posterior distributions,” Annals of Statis-

tics, pp. 1701–1728.

Udry, J Richard (2003) “The national longitudinal study of adolescent health (Add Health),

waves I and II, 1994–1996; wave III, 2001–2002 [machine-readable data file and documen-

tation],” Chapel Hill, NC: Carolina Population Center, University of North Carolina at

Chapel Hill.

Wasserman, Stanley and Philippa Pattison (1996) “Logit models and logistic regressions for

social networks: I. An introduction to Markov graphs and p∗,” Psychometrika, Vol. 61,

pp. 401–425.

49



Weinberg, Bruce A. (2007) “Social interactions with endogenous associations,” NBER work-

ing paper.

Zimmerman, David J (2003) “Peer effects in academic outcomes: Evidence from a natural

experiment,” Review of Economics and Statistics, Vol. 85, pp. 9–23.

50



Appendix

A Proof of Proposition 1

The existence and uniqueness of the Nash equilibrium for a fixed network structure follows

directly from the literature (e.g., Ballester et al., 2006; Calvó-Armengol et al., 2009). We

nonetheless include a short proof for completeness.

We start with the case where yi,d is uncensored. Taking the first-order conditions of

Ui(W,Y1, ..., Yd̄) with respect to yi,d leads to:

µi,d − yi,d + λd

m∑
j=1

wijyj,d = 0,

or, rearranging and writing in a matrix form:

Bu(Yd) ≡ Yd = µd + λdWYd, (A.1)

where Bu(Yd) denotes the best-response function.

For any Yd, Ỹd, we have: ‖Bu(Yd) − Bu(Ỹd)‖∞ = |λd|‖W (Yd − Ỹd)‖∞ ≤ |λd|‖W‖∞‖Yd −

Ỹd‖∞. Then, Bu(Yd) is a contraction mapping whenever |λd| < 1/‖W‖∞. By Banach fixed-

point theorem, this implies that there exists a unique Nash equilibrium of Yd such that

Bu(Yd) = Yd. It also implies that the linear system (A.1) has a unique solution so that

Y ∗d = [Im − λdW ]−1µd, where the inverse is well defined.

The case where yi,d is left censored, i.e., yi,d ≥ 0 is similar. Indeed, since Ui(W,Y1, ..., Yd̄)

is concave in yi,d, the optimal solution y∗i,d = arg max
yi,d≥0

Ui(W,Y1, ..., Yd̄) is given by 0 or by the

first-order conditions. Formally:

y∗i,d = max{0, µi,d + λd

m∑
j=1

wijyj,d} (A.2)

Then, similar to the case where yi,d is uncensored, we can write the vector-valued best re-

sponse function Bc(Yd) = [y∗1,d, ..., y
∗
m,d]

′. Now, for a fixed value of Yd, note that we necessarily

have: ‖Bc(Yd)−Bc(Ỹd)‖∞ ≤ ‖Bu(Yd)−Bu(Ỹd)‖∞. This implies that if Bu(Yd) is a contrac-

tion mapping, then so is Bc(Yd). Using the same argument as before, there exists a unique

Nash equilibrium of the game for left-censored activities.
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We now turn to the first stage of the game. Since there exists a unique Nash equilibrium

(Y ∗1 (W ), ..., Y ∗
d̄

(W )), the value of the network T (W ) is uniquely defined. Also, since τW

is drawn from a Type-I extreme value distribution, the probability of having more than

one network structure maximizing T (W ) is zero. There is, therefore, a generically unique

strongly efficient network, and the probability that W maximizes T is given by:

P (W ) =
exp{V (W )}∑
W̃ exp{V (W̃ )}

.

Existence is guaranteed by letting the allocation rule Λi(W,T ) = T (W )/m for all i, which

implies that strongly efficient networks are individually stable. This completes the proof.

B Likelihood function for the full model with a cen-

sored activity intensity

For the censored activity intensity yig ∈ R+, the equilibrium outcome vector based on Eq. (5)

can be expressed as:

Yg = max
(

0, Ÿg

)
,

Ÿg = λWgYg +Xgβ1 +WgXgβ2 + Zgρ1 +WgZgρ2 + lgαg + ξg. (B.1)

We can divide the mg individuals in group g into two blocks, such that the first mg1 individu-

als have activity variables equal to zero, and the remaining individuals who are arranged from

mg1 + 1 to mg have positive values. Ÿg of Eq. (B.1) and the network Wg can be conformably

decomposed into: Ÿg1

Yg2

 =λ

 W11,g W12,g

W21,g W22,g

 Yg1

Yg2

+

 Xg1

Xg2

 β1 +

 W11,g W12,g

W21,g W22,g

 Xg1

Xg2

 β2

+

 Zg1

Zg2

 ρ1 +

 W11,g W12,g

W21,g W22,g

 Zg1

Zg2

 ρ2 +

 lg1

lg2

αg +

 ξg1

ξg2

 ,

(B.2)

52



where Yg2 > 0 and Yg1 = 0, with the corresponding latent Ÿg1 ≤ 0. Based on Eq. (B.2), the

joint probability function of Yg and Wg can be written as:

P (Yg,Wg|θg, αg, Zg)

= P (Yg1 = 0, Yg2,Wg|θg, αg, Zg)

=

∫
I(Yg1 = 0, Ÿg1) · P (Ÿg1, Yg2,Wg|θg, αg, Zg) · dŸtg1

=

∫ −(λW12,gYg2+Xg1β1+(W11,gXg1+W12,gXg2)β2+Zg1ρ1+(W11,gZg1+W12,gZg2)ρ2+lg1αg)

−∞∣∣Img−mg1 − λW22,g

∣∣ · f(ξg1, ξg2|θg, αg, Zg) · P (Wg|ξg1, ξg2, θg, αg, Zg) · dξg1, (B.3)

where I(Yg1 = 0, Ÿg1) is a dichotomous indicator that is equal to 1 when Ÿg1 is negative, and

equal to 0, otherwise; ξg2 =
(
Img−mg1 − λW22,g

)
Yg2 − Xg2β1 − (W21,gXg1 + W22,gXg2)β2 −

Zg2ρ1 − (W21,gZg1 +W22,gZg2)ρ2 − lg2αg and θg = (γ′, η′, δ, λ, β′, ρ′, σ2
ξg

).
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Table 1: Results of Monte Carlo experiments for the uncensored activity variable.

Full No latent No global Latent only Activity alone

Parameter True Mean SD Mean SD Mean SD Mean SD Mean SD

λ 0.0500 0.0500 0.0073 0.0679 0.0091 0.0167 0.0052 0.0595 0.0091 0.0846 0.0073

β1 0.3000 0.2817 0.0280 0.2986 0.0283 0.2992 0.0299 0.3038 0.0271 0.2965 0.0281

β2 0.1000 0.0927 0.0099 0.1036 0.0196 0.1084 0.0116 0.1317 0.0185 0.1243 0.0214

ρ1 0.3000 0.2838 0.0605 - - 0.2359 0.0689 0.2713 0.0923 - -

ρ2 0.1000 0.0946 0.0248 - - 0.0696 0.0316 0.0864 0.0685 - -

γ0 -0.5000 -0.5262 0.0655 -1.9885 0.1387 -1.4266 0.0617 -1.0418 0.0362 - -

γ3 0.3000 0.3106 0.0505 0.2733 0.0538 0.3519 0.0723 0.3620 0.0611 - -

γ4 -1.0000 -1.1367 0.0715 - - -1.1137 0.0784 -1.0580 0.0514 - -

η1 0.3000 0.2959 0.0405 0.4401 0.0499 - - - - - -

η2 0.2000 0.2172 0.0475 0.3101 0.0602 - - - - - -

η3 -0.1000 -0.1003 0.0084 -0.1098 0.0100 - - - - - -

η4 0.0400 0.0418 0.0036 0.0325 0.0042 - - - - - -

η5 0.3000 0.3023 0.0241 0.4015 0.0285 - - - - - -

η6 -0.2000 -0.1976 0.0216 -0.1777 0.0273 - - - - - -

δ 0.3000 0.3000 0.0259 0.2094 0.0569 1.0049 0.1001 - - - -

σ2
ξ 0.5000 0.5381 0.1759 0.6852 0.1843 0.6647 0.2403 0.5259 0.1764 0.6740 0.1784

Note: This Monte Carlo study consists of 100 repetitions. The values reported in this table are the mean and the standard

deviation of parameter estimates across repetitions. In each repetition, we estimate each of the corresponding models with

50,000 MCMC draws. We drop the first 10,000 draws due to burn-in and calculate the (posterior) mean of the remaining

draws as parameter estimates.

Table 2: Results of Monte Carlo experiments for the censored activity variable

Full No latent No global Latent only Activity alone

Parameter True Mean SD Mean SD Mean SD Mean SD Mean SD

λ 0.0500 0.0492 0.0131 0.0890 0.0157 0.0242 0.0121 0.0568 0.0131 0.1187 0.0147

β1 0.3000 0.2695 0.0169 0.2798 0.0130 0.2726 0.0153 0.2779 0.0122 0.2761 0.0123

β2 0.1000 0.0820 0.0091 0.0880 0.0060 0.0685 0.0085 0.1094 0.0058 0.0935 0.0065

ρ1 0.3000 0.2464 0.0320 - - 0.2567 0.0615 0.2496 0.0478 - -

ρ2 0.1000 0.0972 0.0228 - - 0.1145 0.0249 0.1073 0.0401 - -

γ0 -1.7000 -1.6505 0.1155 -2.7295 0.1327 -1.9584 0.0895 -1.7348 0.0502 - -

γ3 0.3000 0.3022 0.0426 0.2673 0.0474 0.3211 0.0556 0.3265 0.0530 - -

γ4 -1.0000 -1.0715 0.0848 - - -1.0638 0.1144 -1.1122 0.0692 - -

η1 0.3000 0.2873 0.0392 0.4504 0.0520 - - - - - -

η2 0.2000 0.2085 0.0487 0.2107 0.0684 - - - - - -

η3 -0.1000 -0.0998 0.0099 -0.0975 0.0129 - - - - - -

η4 0.0400 0.0391 0.0041 0.0352 0.0044 - - - - - -

η5 0.3000 0.2802 0.0325 0.4073 0.0370 - - - - - -

η6 -0.2000 -0.2062 0.0252 -0.1609 0.0312 - - - - - -

δ 0.3000 0.3166 0.0117 0.1885 0.0521 0.4211 0.1242 - - - -

σ2
ξ 0.5000 0.5163 0.1406 0.6132 0.1477 0.5348 0.1611 0.4739 0.1289 0.6013 0.1425

Note: This Monte Carlo study consists of 100 repetitions. The values reported in this table are the mean and the standard

deviation of parameter estimates across repetitions. In each repetition, we estimate each of the corresponding models with

50,000 MCMC draws. We drop the first 10,000 draws due to burn-in and calculate the (posterior) mean of the remaining

draws as parameter estimates.
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Table 3: Summary statistics

Variable Min Max Mean SD

GPA 1 4 3.059 0.742

Smoking 0 (73.26%) 7 0.543 1.715

Age 11 18 13.788 1.641

Male 0 1 0.457 0.498

Female 0 1 0.543 0.498

White 0 1 0.741 0.438

Black 0 1 0.128 0.335

Asian 0 1 0.017 0.131

Hispanic 0 1 0.050 0.218

Other race 0 1 0.063 0.243

Both parents 0 1 0.821 0.383

Less HS 0 1 0.069 0.254

HS 0 1 0.326 0.469

More HS 0 1 0.460 0.499

Edu missing 0 1 0.094 0.291

Professional 0 1 0.273 0.446

Staying home 0 1 0.230 0.421

Other jobs 0 1 0.375 0.484

Job missing 0 1 0.069 0.254

Welfare 0 1 0.002 0.044

Num. of other students at home 0 6 0.591 0.850

Network size 29 101 69.29 23.96

Network density 0.016 0.136 0.076 0.062

Out-degree 0.000 10.000 3.752 2.688

Clustering coefficient 0.025 0.186 0.095 0.048

Sample size 1,036

Num. of networks 15

Note: ‘Both parents’ means living with both parents. ‘Less HS’ means

mother’s education is lower than a high-school level, ‘HS’ means mother’s

education level is high school. ‘More HS’ means mother’s education is above

a high-school level. ‘Edu missing’ means mother’s education level is missing.

‘Professional’ means mother’s employment is as either a scientist, teacher,

executive, director, and the like. ‘Other jobs’ means mother’s occupation is

not among Professional or Staying home categories. ‘Job missing’ means the

mother’s occupation information is missing. ‘Welfare’ means the mother par-

ticipates in social welfare programs. ‘Num. of other students at home’ means

the number of other students from grades 7 to 12 living in the same household

with the student. The variables in italics are the omitted categories during

the estimation.
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Table 4: Estimation results based on both GPA and smoking.

Full No latent No global Latent only Activity alone

Local & global & incentive effects

Constant (γ0) -4.8531∗∗∗ -5.7071∗∗∗ -3.9329∗∗∗ 1.1101∗∗∗ -

(0.0366) (0.1194) (0.1134) (0.0958) -

Experience in school (sender) (γ1) -0.0405∗∗∗ -0.0159 0.0892∗∗∗ 0.0528∗∗∗ -

(0.0114) (0.0212) (0.0211) (0.0148) -

Experience in school (receiver) (γ2) 0.0374∗∗ 0.0515∗∗∗ 0.1586∗∗∗ 0.1301∗∗∗ -

(0.0143) (0.0198) (0.0247) (0.0147) -

Same age (γ31) 0.3675∗∗∗ 0.5340∗∗∗ 1.0300∗∗∗ 0.4450∗∗∗ -

(0.0431) (0.0496) (0.0773) (0.0586) -

Same sex (γ32) 0.3471∗∗∗ 0.4889∗∗∗ 0.3454∗∗∗ 0.5477∗∗∗ -

(0.0441) (0.0608) (0.0686) (0.0517) -

Same race (γ33) 0.3116∗∗∗ 0.2152∗∗∗ 0.3716∗∗∗ 0.3961∗∗∗ -

(0.0430) (0.0789) (0.0839) (0.0595) -

Latent distance (γ41) -0.1469∗∗∗ - -0.3945∗∗∗ -3.9387∗∗∗ -

(0.0173) - (0.0671) (0.1214) -

Latent distance (γ42) -0.0966∗∗ - -0.2231∗∗∗ -2.5592∗∗∗ -

(0.0414) - (0.0662) (0.1000) -

Latent distance (γ43) -0.0125 - -0.0868 -2.3793∗∗∗ -

(0.0528) - (0.0594) (0.0887) -

Reciprocity (η1) 1.4309∗∗∗ 1.4080∗∗∗ - - -

(0.0476) (0.0552) - - -

Congestion (η2) 0.2699∗∗∗ 0.3521∗∗∗ - - -

(0.0151) (0.0281) - - -

Congestion (η3) -0.0247∗∗∗ -0.0304∗∗∗ - - -

(0.0017) (0.0022) - - -

Popularity (η4) 0.0049 0.0015 - - -

(0.0068) (0.0061) - - -

Trans. triads (η5) 0.4715∗∗∗ 0.4767∗∗∗ - - -

(0.0220) (0.0189) - - -

Three cycles (η6) -0.2071∗∗∗ -0.2083∗∗∗ - - -

(0.0171) (0.0166) - - -

Incentive from GPA (δ1) 0.2145∗∗ 0.1825∗∗∗ 0.2921∗∗∗ - -

(0.0956) (0.0344) (0.1122) - -

Incentive from smoking (δ2) 0.0197 0.0083 0.0214 - -

(0.0134) (0.0053) (0.0131) - -

Activity intensity – GPA

Endogenous (λ) 0.0177∗∗∗ 0.0189∗∗∗ 0.0162∗∗ 0.0239∗∗ 0.0330∗∗∗

(0.0063) (0.0070) (0.0071) (0.0091) (0.0105)

Own Contex. Own Contex. Own Contex. Own Contex. Own Contex.

Age −0.0327∗∗ 0.0018 −0.0368∗∗∗ 0.0013 −0.0382∗∗ 0.0009 −0.0388∗ 0.0009 −0.0366∗∗ −0.0013

(0.0164) (0.0024) (0.0136) (0.0024) (0.0148) (0.0025) (0.0202) (0.0025) (0.0167) (0.0026)

Male −0.1984∗∗∗ −0.0152 −0.1926∗∗∗ −0.0166 −0.1854∗∗∗ −0.0143 −0.1863∗∗∗ −0.0166 −0.1906∗∗∗ −0.0161

(0.0307) (0.0215) (0.0381) (0.0239) (0.0335) (0.0212) (0.0381) (0.0232) (0.0359) (0.0244)

Black −0.0014 −0.0636∗∗∗ −0.0564 −0.0564∗∗ −0.0265 −0.0608∗∗∗ −0.0109 −0.0489∗∗ −0.0607 −0.0577∗∗
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Table – Continued

(0.0473) (0.0247) (0.0613) (0.0234) (0.0433) (0.0226) (0.0716) (0.0219) (0.0626) (0.0212)

Asian 0.0028 −0.1957∗∗∗ −0.0791 −0.2240∗∗∗ −0.0574 −0.1647∗∗∗ −0.0384 −0.1824∗∗∗ −0.0309 −0.2251∗∗∗

(0.0723) (0.0566) (0.1004) (0.0659) (0.0501) (0.0393) (0.0902) (0.0567) (0.0826) (0.0643)

Hispanic −0.2332∗∗∗ −0.0362 −0.2241∗∗∗ −0.0381 −0.2406∗∗∗ −0.0644∗∗ −0.2433∗∗∗ −0.0502 −0.1990∗∗∗ −0.0278

(0.0360) (0.0485) (0.0776) (0.0576) (0.0442) (0.0337) (0.0737) (0.0500) (0.0680) (0.0526)

Other race −0.0689 −0.0967∗∗ −0.1168∗ −0.0873∗ −0.0671 −0.1137∗∗∗ −0.0555 −0.0838∗ −0.0914∗ −0.1020∗∗

(0.0418) (0.0449) (0.0673) (0.0483) (0.0524) (0.0385) (0.0575) (0.0473) (0.0556) (0.0491)

Both parents 0.1149∗∗∗ −0.0701∗∗∗ 0.1140∗∗ −0.0598∗∗ 0.1147∗∗∗ −0.0525∗∗ 0.1145∗∗∗ −0.0602∗∗ 0.1126∗∗∗ −0.0637∗∗

(0.0368) (0.0213) (0.0510) (0.0271) (0.0382) (0.0268) (0.0427) (0.0258) (0.0449) (0.0293)

Less HS −0.3424∗∗∗ −0.0889∗∗ −0.3466∗∗∗ −0.0895∗∗ −0.3074∗∗∗ −0.1027∗∗∗ −0.2972∗∗∗ −0.0924∗∗ −0.3070∗∗∗ −0.0839∗∗

(0.0586) (0.0392) (0.0702) (0.0450) (0.0507) (0.0333) (0.0623) (0.0435) (0.0608) (0.0378)

More HS 0.1593∗∗∗ 0.0485∗∗ 0.1561∗∗∗ 0.0419∗ 0.1686∗∗∗ 0.0397 0.1536∗∗∗ 0.0261 0.1553∗∗∗ 0.0272

(0.0334) (0.0211) (0.0397) (0.0236) (0.0324) (0.0223) (0.0435) (0.0248) (0.0367) (0.0256)

Edu missing −0.1739∗∗∗ 0.0634∗∗ −0.1751∗∗∗ 0.0457 −0.1696∗∗∗ 0.0355 −0.1624∗∗ 0.0472 −0.1727∗∗∗ 0.0323

(0.0532) (0.0334) (0.0588) (0.0391) (0.0362) (0.0341) (0.0634) (0.0366) (0.0533) (0.0342)

Welfare −0.1079∗∗ −0.2848∗∗∗ −0.1593∗ −0.2434∗∗ −0.0547 −0.2932∗∗∗ −0.1001 −0.2892∗∗ −0.1973∗∗ −0.1893∗∗

(0.0567) (0.0723) (0.0950) (0.0980) (0.0634) (0.0550) (0.1589) (0.1173) (0.1000) (0.0716)

Job missing −0.1335∗∗∗ −0.0446 −0.1261∗ −0.0359 −0.1808∗∗∗ −0.0371 −0.1625∗∗∗ −0.0522 −0.1500∗∗∗ −0.0253

(0.0369) (0.0442) (0.0662) (0.0476) (0.0551) (0.0387) (0.0503) (0.0381) (0.0525) (0.0464)

Professional −0.1104∗∗∗ 0.0010 −0.1158∗∗ 0.0075 −0.1162∗∗∗ 0.0119 −0.1347∗∗∗ 0.0003 −0.1097∗∗ 0.0076

(0.0309) (0.0267) (0.0459) (0.0278) (0.0376) (0.0209) (0.0377) (0.0264) (0.0387) (0.0246)

Other jobs −0.0361 0.0268 −0.0482 0.0283 −0.0610∗∗ 0.0310∗∗ −0.0679∗ 0.0214 −0.0354 0.0289

(0.0360) (0.0229) (0.0412) (0.0222) (0.0312) (0.0167) (0.0377) (0.0227) (0.0392) (0.0214)

Num. of other students at home 0.0257 0.0123 0.0195 0.0131 0.0222 0.0154 0.0216 0.0096 0.0184 0.0068

(0.0230) (0.0104) (0.0257) (0.0133) (0.0212) (0.0119) (0.0232) (0.0140) (0.0232) (0.0131)

Latent (ρ11) 0.0211 −0.0198 - - 0.0067 0.0014 0.0272 −0.0170 - -

(0.0548) (0.0283) - - (0.0275) (0.0230) (0.0369) (0.0112) - -

Latent (ρ12) 0.0905∗ 0.0070 - - 0.0260 −0.0020 0.0721∗ −0.0235 - -

(0.0537) (0.0254) - - (0.0610) (0.0242) (0.0472) (0.0197) - -

Latent (ρ13) 0.0542 0.0101 - - 0.0545 0.0105 0.0724∗ −0.0045 - -

(0.0481) (0.0277) - - (0.0454) (0.0232) (0.0466) (0.0188) - -

Activity intensity – smoking

Endogenous (λ) 0.1052∗∗∗ 0.1103∗∗∗ 0.1068∗∗∗ 0.1056∗∗∗ 0.1125∗∗∗

(0.0196) (0.0225) (0.0193) (0.0197) (0.0191)

Own Contex. Own Contex. Own Contex. Own Contex. Own Contex.

Age 0.1462∗∗∗ −0.0047 0.1613∗∗∗ −0.0054 0.1837∗∗∗ −0.0052 0.2051∗∗∗ −0.0120∗∗ 0.1655∗∗∗ −0.0042

(0.0201) (0.0036) (0.0248) (0.0045) (0.0386) (0.0040) (0.0455) (0.0053) (0.0212) (0.0040)

Male 0.0126 −0.0185 −0.0598 0.0390 0.0307 −0.0077 −0.0494 0.0414 −0.0240 0.0160

(0.0650) (0.0305) (0.0691) (0.0424) (0.0594) (0.0427) (0.0915) (0.0436) (0.0624) (0.0395)

Black −0.1952∗∗∗ 0.0828∗∗∗ −0.3633∗∗∗ 0.0726∗∗ −0.2332∗∗ 0.0808∗∗ −0.4153∗∗ 0.0810∗∗ −0.0383 0.0939∗∗∗

(0.0749) (0.0194) (0.1395) (0.0357) (0.1003) (0.0375) (0.2075) (0.0377) (0.0954) (0.0311)

Asian −1.1052∗∗∗ 0.3028∗∗∗ −0.5535∗∗∗ 0.1893∗∗∗ −1.0746∗∗∗ 0.2965∗∗∗ −1.2797∗∗∗ 0.3093∗∗∗ −0.5277∗∗ 0.2472

(0.0615) (0.0444) (0.1917) (0.0672) (0.0857) (0.0639) (0.3075) (0.1120) (0.2115) (0.1586)

Hispanic 0.1317∗∗ 0.0734 −0.0626 0.0204 0.1128 0.0625 −0.0591 0.1509∗ 0.2026∗∗ 0.0232

(0.0613) (0.0472) (0.1029) (0.0839) (0.0862) (0.0735) (0.2321) (0.0849) (0.0990) (0.0734)

Other race 0.0610 0.4019∗∗∗ 0.3284∗∗∗ 0.2831∗∗ 0.0755 0.3913∗∗∗ 0.1891 0.5043∗∗∗ 0.2874∗∗ 0.3868∗∗∗
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(0.0704) (0.0578) (0.0894) (0.0896) (0.0659) (0.0535) (0.1459) (0.0714) (0.1449) (0.0814)

Both parents −0.0808 −0.0140 0.0250 −0.0431 −0.0101 −0.0564 −0.0588 −0.0351 −0.0061 −0.0437

(0.0492) (0.0311) (0.0658) (0.0434) (0.0450) (0.0415) (0.0878) (0.0579) (0.0672) (0.0382)

Less HS 0.3986∗∗∗ 0.0485 0.1828∗∗ 0.0409 0.2762∗∗∗ 0.0382 0.2837∗∗∗ 0.0762 0.1371 0.0426

(0.0484) (0.0634) (0.0919) (0.0607) (0.0533) (0.0478) (0.0972) (0.0667) (0.1032) (0.0676)

More HS −0.1975∗∗∗ −0.0357 −0.2182∗∗∗ −0.0329 −0.0548 −0.0381 −0.1502∗ 0.0131 −0.1895∗∗∗ −0.0103

(0.0515) (0.0369) (0.0661) (0.0479) (0.0443) (0.0383) (0.0906) (0.0472) (0.0679) (0.0512)

Edu missing −0.0965 −0.0551 −0.1907∗∗ 0.0275 −0.1202∗ −0.0620 −0.0775 −0.0273 −0.1388 −0.0216

(0.0636) (0.0351) (0.0750) (0.0611) (0.0744) (0.0433) (0.0874) (0.0806) (0.0877) (0.0619)

Welfare 1.5846∗∗∗ −0.1062∗∗ 1.2705∗∗∗ −0.1601 1.5957∗∗∗ −0.0860 1.6348∗∗∗ 0.0728 1.7299∗∗∗ −0.5848

(0.0764) (0.0550) (0.1107) (0.2201) (0.0559) (0.0653) (0.2791) (0.4136) (0.2190) (0.4791)

Job missing 0.4931∗∗∗ 0.0860 0.3091∗∗ 0.1156∗ 0.5466∗∗∗ 0.0798 0.5669∗∗∗ 0.1639∗ 0.2347∗∗ 0.0045

(0.0612) (0.0542) (0.1322) (0.0683) (0.0496) (0.0658) (0.1226) (0.0907) (0.1107) (0.0696)

Professional 0.3740∗∗∗ −0.0013 0.3326∗∗∗ 0.0014 0.3079∗∗∗ 0.0492 0.4512∗∗∗ 0.0344 0.2685∗∗∗ −0.0150

(0.0464) (0.0258) (0.0791) (0.0500) (0.0852) (0.0381) (0.1044) (0.0559) (0.0949) (0.0436)

Other jobs 0.0037 0.0395 0.1530∗∗∗ 0.0315 0.1064∗ 0.0460 0.1472∗ 0.0682 −0.0551 0.0047

(0.0545) (0.0319) (0.0552) (0.0350) (0.0615) (0.0371) (0.0882) (0.0450) (0.0758) (0.0311)

Num. of other students at home −0.1551∗∗∗ −0.0105 −0.0745∗ −0.0028 −0.1057∗∗∗ 0.0073 −0.0636 0.0173 −0.0541 0.0009

(0.0478) (0.0234) (0.0401) (0.0246) (0.0342) (0.0195) (0.0472) (0.0291) (0.0378) (0.0234)

Latent (ρ21) −0.0921∗∗∗ −0.0180 - - 0.0052 0.0163 −0.0119 −0.0027 - -

(0.0288) (0.0258) - - (0.0447) (0.0453) (0.0510) (0.0201) - -

Latent (ρ22) 0.0074 −0.0057 - - 0.0147 −0.0044 −0.0332 0.0168 - -

(0.0471) (0.0331) - - (0.0712) (0.0414) (0.0574) (0.0290) - -

Latent (ρ23) 0.1055∗∗ 0.0264 - - −0.0125 0.0250 0.0758 −0.0579∗∗ - -

(0.0520) (0.0462) - - (0.0632) (0.0365) (0.0562) (0.0216) - -

Group fixed effect Yes Yes Yes Yes Yes

σ
2(∗)
ξuc,g

(GPA) 0.4508 0.4801 0.4618 0.4668 0.4809

(0.1532) (0.1527) (0.1501) (0.1548) (0.1591)

σ
2(∗)
ξc,g

(smoking) 3.6320 3.6435 3.5293 3.6085 3.5702

(3.2199) (3.2489) (3.1070) (3.1239) (3.1364)

σ
(∗)
ξucc,g

-0.2522 -0.2452 -0.2448 -0.2542 -0.2474

(0.2708) (0.2770) (0.2738) (0.2755) (0.2725)

Note: The full model contains the activity intensity equations for GPA and smoking and the network formation model, where the network formation model

involves the latent characteristic variables, the global effect, and the incentive effect. In the second column, we remove the latent variables from the network

formation model. In the third column, we remove the global effect from the network formation model. In the fourth column, we remove the global effect and

the latent variables from the network formation model. In the fifth column, we estimate only the activity intensity equations. The MCMC runs for 100,000

iterations, and the first 50,000 runs are dropped due to burn-in. Values in parentheses are standard deviations of draws from MCMC. The asterisks ∗∗∗(∗∗,∗)

indicate that its 99% (95%, 90%) highest posterior density range does not cover zero. σ
2(∗)
ξuc,g

, σ
2(∗)
ξc,g

, and σ
(∗)
ξucc,g

denote the average of the estimated variances

for error terms in the activity intensity equations of GPA, smoking, and their covariances from different groups and the value in the parenthesis is the average of

standard deviations. The trace plots of key parameters, i.e., λ and δ and the convergence diagnostics of Geweke (1992), are provided in Supplementary Appendix

Figure E.3.
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Figure 3: Trace plot of MCMC draws for the parameter λ at different initial values (for the

uncensored outcome). The true value of λ in the simulation is 0.05.
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Figure 4: Trace plot of MCMC draws for the parameter δ at different initial values (for the

uncensored outcome). The true value of δ in the simulation is 0.3.
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Figure 5: The average computation time (in seconds) for a single MCMC iteration. The

scale of the vertical axis is logarithmic.
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