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ABSTRACT 
Change-point processes are one flexible approach to model long time series. We propose a 
method to uncover which model parameter truly vary when a change-point is detected. Given 
a set of breakpoints, we use a penalized likelihood approach to select the best set of parameters 
that changes over time and we prove that the penalty function leads to a consistent selection 
of the true model. Estimation is carried out via the deterministic annealing expectation-
maximization algorithm. Our method accounts for model selection uncertainty and associates 
a probability to all the possible time-varying parameter specications. Monte Carlo simulations 
highlight that the method works well for many time series models including heteroskedastic 
processes. For a sample of 14 Hedge funds (HF) strategies, using an asset based style pricing 
model, we shed light on the promising ability of our method to detect the time-varying 
dynamics of risk exposures as well as to forecast HF returns. 
 
JEL Classification: C11, C12, C22, C32, C52, C53. 
 
Keywords: change-point, structural change, time-varying parameter, model selection, Hedge 
funds. 
 
Arnaud Dufays : Département des sciences de gestion, Université Namur et Département 
d'économique, Université Laval. CRREP et CeReFiM. 
Elysee Aristide Houndetoungan : Département d'économique, Université Laval. 
Alain Coën : Department of Finance, UQAM. 



1 Introduction

Long time series are standard in this period of large publicly available datasets. Care is

required when modeling such a time series since many of them span over critical events that

may change the series dynamic. At least two statistical solutions exist to take into account

these changes. On the one hand, a process with �xed parameters can be used but it needs

to exhibit a rich and complex dynamic. This complexity often makes the model di�cult to

estimate and to interpret (see, for instance, long memory processes such as Geweke and Porter-

Hudak (1983)). On the other hand, one can rely on time-varying parameter (TVP) models

and in particular Markov-switching and change-point (CP) processes since they allow for

abrupt changes in the model parameters when a critical event a�ects the series dynamic (see

Hamilton, 1989; Bauwens, Koop, Korobilis, and Rombouts, 2015). For instance, CP models

generally boil down to �tting standard and easy-to-interpret processes to model segments of

long time series. This paper deals with CP linear regression models where we allow the mean

parameters to change over time.

The CP literature dates back to Cherno� and Zacks (1964) and is nowadays vast. Just focusing

on linear regressions, Andrews (1993), Bai and Perron (1998), Killick, Fearnhead, and Eckley

(2012), Fryzlewicz et al. (2014) and Yau and Zhao (2016) develop prominent procedures to

detect breakpoints. On the Bayesian side, there also exist many ways to estimate structural

breaks and important contributions can be found in Stephens (1994), Chib (1998), Fearnhead

and Liu (2007), Rigaill, Lebarbier, and Robin (2012) and Maheu and Song (2013). While all

these methods di�er in the criterion or in the algorithm used to detect the changes, most of

them rely on the assumption that, when a break is detected (that may be triggered by the

change in only one model parameter), a new segment is created and a new set of parameters

needs to be estimated. Although the assumption seems harmless, it creates two important

drawbacks:

1. From an interpretation perspective, if all the parameters have to change when a break

is detected, it is di�cult to assess which parameters have indeed abruptly varied and

so it complicates the economic interpretation of the structural break.

2. Forecasting wise, when a parameter does not vary from one regime to another, its

estimation is more accurate than if two parameters were considered over these two

regimes. This feature could improve the predictions of the model.

In this paper, we propose a method to relax the assumption that a break triggers a

change in all the model parameters. To do so, we �rst estimate the potential break dates

exhibited by the series and then we use a penalized likelihood approach to detect which

1



parameters change. Because some segments in the CP regression can be small, we opt for a

(nearly) unbiased penalty function, called the seamless-L0 (SELO) penalty function, recently

proposed by Dicker, Huang, and Lin (2013). We prove the consistency of the SELO estimator

in detecting which parameters indeed vary over time and we suggest using a deterministic

annealing expectation-maximisation (DAEM) algorithm to deal with the multimodality of the

objective function (see Ueda and Nakano, 1998). Since the SELO penalty function depends

on two tuning parameters, we use a criterion (new in this literature) to choose the best

tuning parameters and as a result the best model. This new criterion exhibits a Bayesian

interpretation which makes possible to assess the parameters' uncertainty as well as the

model's uncertainty. This last feature is determinant when predicting a time series since

the Bayesian model averaging technique, that typically improves forecast accuracy, is readily

applicable (see, e.g., Raftery, Kárn�y, and Ettler, 2010; Koop and Korobilis, 2012).

We are aware of four other papers that also relax the assumption on the number of

parameters that changes when a break is detected. In the frequentist literature, the in�uential

paper of Bai and Perron (1998) proposes a method that also operates when only a subset

of parameters can break. However, prior knowledge of this subset is required as the number

of possibilities grows exponentially with the number of breaks as well as with the number of

parameters that can break. From a Bayesian perspective, Giordani and Kohn (2008) (and its

related empirical paper, Koop, Leon-Gonzalez, and Strachan (2009)) specify a mixture state

space model and provide an example of how it can be used to distinguish the parameters that

abruptly change over time. While the process is very �exible, the estimation procedure breaks

down when the number of parameters is large.1 Another Bayesian method is proposed by Eo

(2016). He suggests estimating all the possible models and choosing the best speci�cation

using the marginal likelihood criterion. While the method works well for models exhibiting

a small amount of parameters, it is not applicable for large models. Moreover, the approach

is time-consuming as many posterior distributions need to be simulated. Recently, Dufays

and Rombouts (2018) propose a Bayesian CP model where irrelevant parameters are shrunk

to zero using shrinkage priors. The method is generic as it operates for linear and non-linear

models. However, as they use a discontinuous shrinkage prior, it renders the estimation time-

consuming, complicated to code and not suited for large models. Moreover, while a Monte

Carlo study shows that the method works well, it is not supported by asymptotic results.

We believe that our method exhibits several advantages over the existing alternatives.

Firstly, it operates for small and large dimensions. It only requires that the amount of

1At each iteration of the algorithm, it is required to explore the discrete space of the latent variable that
is related to the mixture distributions of the innovations. This discrete space grows exponentially with the
number of model parameters. See the argument in Chan, Koop, Leon-Gonzalez, and Strachan (2012) on
page 9.
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observations per segment is larger than the number of parameters to be estimated in the

segment. Secondly, the estimation is very fast compared to the Bayesian alternatives and

we provide an R package to disseminate our approach. As a �nal advantage, we relax the

assumption on breakpoints once the structural breaks have been detected which makes our

approach operating in combination with any existing CP methods. To be speci�c, in this

paper, we illustrate our approach with the CP procedure of Yau and Zhao (2016) but any

other CP method could have been used. Also, instead of choosing one breakpoint detection

algorithm, we could apply several of these methods and discriminate the detected structural

changes using our marginal likelihood criterion once the parameters that truly evolve have

been identi�ed.

A �nal reference close to our framework is Chan, Yau, and Zhang (2014) who propose a

penalized regression for segmenting time series in piecewise linear models. The paper uses a

group Lasso penalty function (see Yuan and Lin, 2006) to get an overestimated number of

segments and in a second phase, an information criterion is used to improve the estimation.

By doing so, their procedure stands for another CP detection method based on a penalized

regression approach. While the purpose of their paper is di�erent from ours, their framework

could be used for detecting the relevant changes in parameters. Nevertheless, we di�er from

their methods in many aspects. First, we use an almost unbiased penalty function and from

a theoretical perspective, as we use the penalized regression on a potential break date set, our

assumptions for a consistent estimator are di�erent and in line with the standard penalized

regression literature. We also use a Bayesian criterion to select among the promising models

uncovered by the penalty function which allows for model uncertainty and for Bayesian model

averaging. Also, our estimation procedure is fast compared to Chan, Yau, and Zhang (2014)

since we iterate on closed-form expressions and because our model exhibits fewer parameters.

As a �nal di�erence, we provide break uncertainty.

An extensive Monte Carlo study highlights how our method works in practice. For in-

stance, we show that even when the number of parameters are as high as 100, the approach

accurately detects which parameters change when a break is detected.

Eventually, we apply our method on Hedge funds (HF) returns. As reported by Fung and

Hsieh (1997) (and hereafter by many others), HF strategies di�er signi�cantly from regulated

investments like mutual funds. HF managers aims at targeting absolute returns regardless of

the market conditions. Therefore, they follow highly dynamic, complex and essentially opaque

trading strategies. HF strategies are exposed to time-varying risk sensitivities captured by

numerous and changing economic risk factors. This feature has important implications for

performance appraisal. As highlighted by Fung, Hsieh, Naik, and Ramodarai (2008), by

Meligkotsidou and Vrontos (2008), by Bollen and Whaley (2009), and more recently by Pat-
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ton, Ramodarai, and Streat�eld (2015), the dynamics of HF risk exposures and the nonlinear

generating process of HF returns should be associated with market events and structural

breaks. In this context, a CP detection method is particularly relevant for modeling them.

For a sample of 14 monthly Credit Suisse HF indices spanning from March 1994 to March

2016, and using the asset based style pricing model introduced by Fung and Hsieh (2001), we

illustrate the relevance of our selective linear segmentation model. Speci�cally, our modeling

is particularly appealing to detect time-varying exposures in HF tradings. We also investigate

the prediction performance of our approach and it turns out that the selective segmentation

approach compares favorably in terms of root mean squared forecast errors and cumulative

log-predictive densities with respect to other CP processes. In particular, it almost system-

atically dominates the CP model which assumes that all the parameters vary when a break

is detected.

The paper is organized as follows. Section 2 documents the model speci�cation and

the SELO penalty function. Section 3 explains how the DAEM algorithm is applied to our

framework. In Section 4, we detail the criterion used to select the SELO tuning parameters

and we relate it to the Bayesian paradigm. Section 5 documents the CP method of Yau and

Zhao (2016) and discusses how it can be slightly improved. An extensive Monte Carlo study

is proposed in Section 6. We end the paper by applying the method on HF returns in Section

7. All the proofs are given in the Appendix.

2 Model speci�cation

We consider a standard linear regression speci�ed as

yt = β1 + β2xt,2 + . . .+ βKxt,K + εt

= x′tβ1 + εt ,
(1)

where εt ∼ MDS(0, σ2) (in which MDS stands for the martingale di�erence sequence),

xt = (1, xt,2, . . . , xt,K)′ and β1 = (β1, β2, . . . , βK)′. Typically, if a linear model is estimated

over a long period, the parameters are subject to abrupt changes over time. To take this time-

varying dynamic into account, we allow for m− 1 structural breaks in the model parameters

as follows,

yt = x′tβ
∗
i + εt , for τi−1 < t ≤ τi, (2)

in which β∗i , is the true parameter of the explanatory variables over the regime i, τ 0 =

{τ0, . . . , τm} ∈ Nm+1 where τ0 = 0, τm = T and τi < τi+1 ∀i ∈ [0,m − 1]. In this paper, we
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are interested in capturing which parameters are subject to breaks and which do not vary

over time. To do so, we reframe the model (2) as follows,

yt = x′tβ
∗
1 + x′t(

m∑
j=2

∆β∗j1{t>τj−1}) + εt ,

y = Xτβ
∗ + ε,

(3)

where 1{x>a} = 1 if x > a and zero otherwise, ∆β∗j = β∗j − β∗j−1, for j ∈ [2,m], stands for

the model parameters in �rst-di�erence, y = (y1, . . . , yT )′, Xτ = (X̃τ0 , X̃τ1 , . . . , X̃τm−1) with

X̃τi = (0,0, . . . ,0,xτi+1, . . . ,xT )′, ε = (ε1, ε2, . . . , εT )′ and β∗ = (β∗′1 ,∆β
∗′
2 , . . . ,∆β

∗′
m)′ ∈

<Km×1. Note that the matrix X̃τ0 stands for the standard regressors since τ0 = 0. Regard-

ing the notations, the �rst-di�erence parameter in regime j is a K-dimensional vector ∆β∗j

such that ∆β∗j = (∆β∗j1, . . . ,∆β
∗
jK)′. Let us also denote A = {(j, k); ∆β∗jk 6= 0, for j ∈

[2,m] and for k ∈ [1,K]}, the set of indices de�ning the true model.

Our strategy to uncover which parameters truly vary over time consists in �rst �nding

where are the potential break dates τ , then, in a second phase, in detecting which parameters

evolve. Note that even when we know the true break dates τ , the problem of �nding which

parameters vary when a break occurs is not straightforward as the number of models to

consider amounts to 2(m−1)K . Consequently, it is infeasible to carry out an exhaustive model

selection when K or m is large. We propose a penalized likelihood approach to explore this

large model space and to select which parameters experience breaks. To focus on our selective

segmentation approach, we shall �rst assume that we have obtained a set of potential break

dates τ . We discuss how we estimate this set in Section 5.

Remark 1. In the situation where all the models can be considered (i.e., (m − 1)K ≤ 10),

we do not need to rely on the penalized likelihood approach explained in Section 2.1. In

particular, we could directly estimate all the model combinations and select the best one

according to the marginal likelihood criterion given in Section 4.

2.1 Penalized likelihood and choice of the penalty function

As emphasized by Equation (3), given a set of break dates τ , the problem of �nding which

parameters abruptly change when a break occurs boils down to a penalized linear regression

problem. Speci�cally, one can solve the following optimization problem

β̂ = arg min
β

||y −Xτβ||22 + T
m∑
j=2

K∑
k=1

pen(∆βjk), (4)
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where || . ||p denotes the Lp norm and pen(∆βjk) stands for a penalty function. Popular

choices of pen(∆βjk) are the Lasso penalty function (i.e., pen(∆βjk) = λ||∆βjk||1, see Tib-
shirani (1994)) or the rigde function (i.e., pen(∆βjk) = λ∆||βjk||22, see, for instance, Ishwaran
and Rao (2005)).

Following Fan and Li (2001), standard desirable properties induced by a penalty function

are i) unbiasdness, ii) sparsity and iii) continuity. For instance, the ridge function is only

continuous while the Lasso penalty function achieves sparsity and continuity (beside at zero).

However one standard issue with these popular penalty functions is that they provide biased

(but typically consistent) estimators. In our framework, this drawback is problematic since

a segment can sometimes contain a small amount of observations that makes consistency

results not su�cient. Recently, Dicker, Huang, and Lin (2013) propose a penalty function,

called seamless-L0 (SELO), that exhibits all the desirable properties. For a model parameter

denoted ω, the penalty function reads as

PSELO(ω|ζ, λ) =
λ

ln 2
ln(

2|ω|+ ζ

|ω|+ ζ
),

where the parameter ζ controls for the concavity of the function and λ stands for the penalty

imposed when ω 6= 0. We slightly modify their function to end up with parameters that are

directly interpretable. In fact, we use the following penalty function,

PSELO(ω|a, λ) =
λ

ln 2
ln(

2( |ω|a ) + ζ

( |ω|a ) + ζ
), (5)

where ζ = 2y−2
1−2y with y ∈ (0, 1), the parameter a can be interpreted as an interval ω ∈ [−a, a]

in which ω will be biased since PSELO(a) = λy. In practice, we set y = 0.99 so that when

|ω| > a, we have PSELO(ω) ≈ λ and dPSELO(ω)
dω ||ω|>a ≈ 0. Figure 1 shows the SELO penalty

function with a = 1 and λ = 0.9. We observe that the function is almost �at for absolute

values greater than a.

2.2 Consistency of the SELO estimator

The interval [−a, a] in which a parameter is biased is likely to change with the variable to

which it refers. Furthermore, if we assume that this interval is �xed over time, we should

set a new parameter a for each variable on the m segments. Unlike Dicker, Huang, and Lin

(2013) who de�ne a single parameter for all the variables, we use K parameters a1, . . . , aK ,
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Figure 1: SELO penalty function. Penalty function is shown in solid black lines while
vertical dotted lines highlight the interval [-a,a]. The SELO parameters are set to λ = 0.9
and a = 1.

that is, one per explanatory variable. Thus, the objective function to minimize is given by

f(β) = ||y −Xτβ||22 + T
λ

ln(2)

m∑
j=2

K∑
k=1

ln

2(
|∆βjk|
ak

) + ζ

(
|∆βjk|
ak

) + ζ

 . (6)

Before discussing how to maximize the objective function, we present the main results about

the modi�ed SELO estimator. As highlighted in Dicker, Huang, and Lin (2013), the SELO

estimator is consistent under reasonable conditions. Proposition 1 shows that this consistency

result also applies in our framework. To do so, we consider the following assumptions (in which

a sequence ωT → ω is understood as limT→∞ωT = ω):

A1. τ = τ 0 and ∀j ∈ [1,m], we have τj − τj−1 = Tδτj → ∞, where
m∑
j=1

δτj = 1 and

δτj > ετ > 0 with ετ = O(1).

A2.
Kmσ2

T
→ 0 and ρ

√
T

Kmσ2
→∞, where ρ = minr,k∈A

(
|∆β∗r,k|

)
.

A3. There exist r0, R0 > 0 such that r0 ≤ λT,min < λT,max ≤ R0, where λT,min and λT,max

are the smallest and largest eigenvalues of
(
T−1X′τXτ

)
respectively.

A4. The process {εt,xt}t∈(τj−1,τj ] is ergodic and stationary for any j = 1, . . . ,m. Moreover,
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∀ t ∈ [1, T ], E(εt|xt) = 0 and E(ε2t |xt) = σ2.

A5. λ = Op(1), ζ = O(1) and ak = Op
(

(mK)−1
(
mKσ2

T

) 3
2

)
, ∀k ∈ [1,K].

We �rst discuss the assumptions before detailing our consistency result. Assumptions A1

to A5 are similar to those found in the variable selection literature (see Fan, Peng, et al., 2004;

Dicker, Huang, and Lin, 2013) and in the CP literature (see Bai and Perron, 1998; Yau and

Zhao, 2016). Condition A1 assumes that the estimated change points are the true locations.

However, the SELO estimator maintains the same asymptotic properties with a set of poten-

tial breakpoints as long as it contains the true break dates (see the adapted assumption A6

below). In such case, Proposition 1 also ensures that the number of breakpoints is consistently

estimated. Note that condition A1 implies that the length of each segment increases linearly

with T . As a consequence, the number of regimes is �xed. Although unattractive, this condi-

tion is generally made in the CP literature (see, e.g., Perron et al., 2006; Yau and Zhao, 2016).

For interested readers, Perron et al. (2006) motivate this assumption in details. Assumption

A2 allows the minimum break size to decrease with the sample size but not at a faster rate

than

√
Kmσ2

T
. Conditions A3 are related to the eigenvalues and are standard in the variable

selection literature (see, e.g., Zhang, Li, and Tsai, 2010). However, we show in Appendix A.4

that this condition is not innocuous and that it implies a �xed number of regimes in our set-

ting. Avoiding this assumption would imply stronger conditions on the process {yt,xt} (see,
e.g., Chan, Yau, and Zhang, 2014). The assumption A4 refers to ergodicity and stationarity

of each segment and imposes standard exogeneity and homoscedasticity. This assumption

ensures that sampled counterparts of the �rst two moments of {xtεt} are converging to �nite
values. Eventually, condition A5 de�nes restrictions on the tuning parameters rate. The same

condition applies in Dicker, Huang, and Lin (2013). The consistency of SELO estimator is

given by the following Proposition.

Proposition 1. Assume that A1-A5 hold and let,

fT (β) =
1

T
||y −Xτβ||22 +

m∑
j=2

K∑
k=1

PSELO(∆βjk|ak, λ). (7)

There exists a sequence of
√

T
Kmσ2 -consistent local minima β̂ of fT (β) as de�ned by Equation

(7) such that:

(i) lim
T→∞

P
({

(j, k); β̂jk 6= 0
}

= A
)

= 1

(ii) ∀ δ > 0, lim
T→∞

P
(
||β̂A − β∗A|| > δ

)
= 0
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Proof. The proof is given in Appendix A

Remark 2. Proposition 1 also applies when the set of breakpoints contains additional spurious

break dates. In particular, Proposition 1 holds if we relax assumption A1 by the less restrictive

assumption:

A6. τ = {τ1, . . . , τm̂} with m̂ ≥ m and τ 0 ⊆ τ and ∀j ∈ [1, m̂], we have τj−τj−1 = Tδτj →∞,

where
m̂∑
j=1

δτj = 1 and δτj > ετ > 0 with ετ = O(1).

3 Estimation

The objective function to minimize is given by

f(β) = ||y −Xτβ||22 + T
λ

ln(2)

m∑
j=2

K∑
k=1

ln

2(
|∆βjk|
ak

) + ζ

(
|∆βjk|
ak

) + ζ

 ,

= ||y −Xτβ||22 +
m∑
j=2

K∑
k=1

ln qk(∆βjk),

(8)

in which qk(∆βjk) =

(
2(
|∆βjk|
ak

)+ζ

(
|∆βjk|
ak

)+ζ

)( Tλ
ln(2)

)
. Due to the penalty function, we cannot �nd any

analytical expression of the minimizer. In addition to that, the function likely exhibits many

local modes which complicates the optimization. We address the problem of �nding the global

mode by using a deterministic annealing expectation-minimization (DAEM) algorithm (see

Ueda and Nakano, 1998). To do so, we �rst approximate the penalty function by a mixture of

three Normal components (to take into account the large tail of the SELO penalty function),

the details of it are given in Appendix A.5. Secondly, since minimizing the sum of squared

residuals is identical to maximizing a likelihood function when the error term is normally

distributed, we work with the following model

y = Xτβ + η,
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where η ∼ N (0, σ2IT ). The modi�ed model implied the following objective function to

maximize with respect to (β, σ2):

f(y|β, σ2) = −T
2

lnσ2 − 1

2σ2
||y −Xτβ||22 −

m∑
j=2

K∑
k=1

ln gk(∆βjk),

gk(∆βjk) =
3∑
i=1

ω
(k)
i fN (∆βjk|µ

(k)
i , s

(k)
i ),

(9)

where fN (x|µ, s) stands for the normal density function evaluated at x with expectation

and variance given by µ and s respectively and ω
(k)
i ∈ (0, 1) with

∑3
i=1 ω

(k)
i = 1. Note

that the function f(β, σ2) in Equation (9) is proportional to the posterior density of the

parameter distribution β, σ2|y from a Bayesian perspective with prior distributions given by

f(σ2,β1) ∝ 1 and f(∆βjk) = gk(∆βjk) for j ∈ [2,m] and k ∈ [1,K]. The optimization is

therefore equivalent to �nding the mode of β, σ2|y. Using a data augmentation approach,

we add latent variables z = (z21, z22, . . . , zmK)′ such that f(zjk = i) = ω
(k)
i , ∀j ∈ [2,m],

∀k ∈ [1,K] and ∀i ∈ [1, 3]. With these latent variables, we can write the prior distribution of

∆βjk in a convenient hierarchical way as follows,

f(∆βjk|zjk = i) = fN (∆βjk|µ
(k)
i , s

(k)
i ),

f(zjk = i) = ω
(k)
i .

By �xing θ = {β, σ2}, the EM algorithm (and its DAEM variant) solves the following opti-

mization at iteration n,

argmaxθnQ(θn|θn−1) = argmaxθnEz|y,θn−1
(ln f(θn, z|y)|y,θn−1).

One can easily show that maximizing Q(θn|θn−1) implies that f(θn|y) ≥ f(θn−1|y).
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3.1 Derivation of the DAEM algorithm

To apply the DAEM algorithm, we need to �nd an expression of Q(θ|θn−1). Given a set of

parameter θn−1, we have that

Q(θ|θn−1) = Ez|y,θn−1
(ln f(θ|y, z)f(z|y)|y,θn−1)

∝ ln f(y|β, σ2) + ln f(β1, σ
2) +

m∑
j=2

K∑
k=1

3∑
i=1

−
(∆βkj − µ

(k)
i )2

2s
(k)
i

f(zkj = i|y,θn−1),

∝ ln f(y|β, σ2)− 1

2

3∑
i=1

(β − µi)′Σi(β − µi),

where

µi = ( 0, 0, . . . , 0︸ ︷︷ ︸
K-dimensional

, µ
(1)
i , µ

(2)
i , . . . , µ

(K)
i , µ

(1)
i , . . .)′ ∈ <mK×1,

Σi = diag( 0, 0, . . . , 0︸ ︷︷ ︸
K-dimensional

,
p

(i)
21

s
(1)
i

,
p

(i)
22

s
(2)
i

, . . . ,
p

(i)
2K

s
(K)
i

,
p

(i)
31

s
(1)
i

, . . . ,
p

(i)
mK

s
(K)
i

),

with p
(i)
jk = f(zjk = i|y,θn−1) ∀i ∈ [1, 3],∀j ∈ [2,m] and ∀k ∈ [1,K] . Importantly, the

di�erence between the EM algorithm and its DA version only appears in the quantities p
(i)
jk .

In fact, the DAEM algorithm introduces an increasing function φ(r) : [1, N ] → (0, 1] such

that 0 < φ(1) ≤ 1 and φ(N) = 1. For each value r = 1, . . . , N , it applies recursively the

EM algorithm (that starts with the �nal estimate of the previous EM algorithm) where the

posterior probabilities p
(i)
jk are denoted p

(i,φ(r))
jk and are modi�ed as follows,

p
(i,φ(r))
jk ∝ (fN (∆βjk|µ

(k)
i , s

(k)
i )ω

(k)
i )φ(r). (10)

When r = N , the increasing function φ(r) = 1 and the standard EM algorithm is run

(but with a promising starting point). To �nd the maximum of Q(θ|θn−1), we sequentially

maximize β given σ2 and then σ2 with respect to β. This approach, called coordinate iterative

ascent, operates in two steps:

1. Compute βn = argmaxβQ(β, σ2
n−1|θn−1).

2. Compute σ2
n = argmaxσ2Q(βn, σ

2|θn−1).

11



At the end of the two steps, we necessarily have Q(βn−1, σ
2
n−1|θn−1) ≤ Q(βn, σ

2
n−1|θn−1) ≤

Q(βn, σ
2
n|θn−1). The maximisation of β given σ2

n−1 leads to

βn = [σ−2
n−1X

′
τXτ +

3∑
i=1

Σi]
−1[σ−2

n−1X
′
τy +

3∑
i=1

Σiµi].

The update of σ2 conditional to βn is given by

σ2
n =

[(y −Xτβn)′(y −Xτβn)

T
.

We summarize the DAEM procedure in Algorithm 1. In practice, the minimum distance

e indicating a convergence of the algorithm is set to 10−5 and the number of DAEM iteration

N is �xed to 10.

Algorithm 1 DAEM algorithm

Initialize β0 using Algorithm 2

Set σ2
0 = [(y−Xτβ0)′(y−Xτβ0)

T , φ(1) = ( 1
N )2, r = 1 and dist =∞.

while r <= N do

Set n = 0 and θn = (β′0, σ
2
0)′.

while dist > e do
Increment n = n+ 1.
Compute the posterior probabilities p

(i,φ(r))
jk given in Equation (10) for i=1,2,3

Compute the mean parameters

βn = [σ−2
n−1X

′
τXτ +

3∑
i=1

Σi]
−1[σ−2

n−1X
′
τy +

3∑
i=1

Σiµi].

Compute the variance parameter

σ2
n =

[(y −Xτβn)′(y −Xτβn)

T
.

Set θn = (β′n, σ
2
n)′ and compute the distance value dist = ||θn − θn−1||2.

end while

Increment r = r + 1 and set φ(r) = ( rN )2. Set β0 = βn and σ2
0 = σ2

n.
end while

The EM and the DAEM algorithms are sensitive to starting values. Inspired by Zhao,

Hautamäki, Kärkkäinen, and Fränti (2012), we mitigate this issue by randomly exploring the

model space using a swapping approach before applying the DAEM algorithm. To be speci�c,

we generate Ninit values as explained in Algorithm 2 and we initialize the DAEM algorithm

12



with the parameter estimates that minimize the penalized function given in Equation (8). In

practice, we set Ninit = min(2(m−1)K−1, 3000).

Algorithm 2 Initialization of the DAEM algorithm

for n = 1 to Ninit do

Set Â = ∅ and sample p ∼ U [0, 1].
For j = 2, ...,m and for k = 1, ...,K, do Â = Â ∪ (j, k) with probability p .
(fn,βn) = Swap(Â) (see Algorithm 3)

end for

Return the OLS estimates βn̂ such that n̂ = arg minn∈[1,Ninit] fn.

Algorithm 3 Swap the set of indices - Swap(Â)

Given a set of indices Â de�ning the parameters ∆β 6= 0, for j = 2, ...,m and for k = 1, ...,K do

Build the sets Ãjk = Â ∪ (j, k) if Â ∩ (j, k) = ∅ or the set Ãjk = Â\(j, k) otherwise.
For each set Ãjk, compute the OLS estimates (β̂jk) and the penalized function fjk = f(β̂jk) (see (8)).

For the set Â, compute the OLS estimates (β̂Â) and the penalized function fÂ = f(β̂Â) (see (8)).

Find (ĵ, k̂) = arg minj,k fjk
if fĵk̂ < fÂ then

Return β̂ĵk̂ and fĵk̂
else

Return β̂Â and fÂ
end if

4 Selection of the penalty parameters and parameter uncer-

tainties

The SELO penalty function exhibits two tuning parameters a and λ. The standard approach

to �x them consists in considering a grid of values of these parameters and in selecting the

parameters that maximize a (generally consistent) information criterion (e.g., Zhang, Li, and

Tsai, 2010). Instead of relying on a standard information criterion and select the tuning

parameters a and λ that maximize it, we consider each pair (a, λ) as a model to take into

account the model uncertainty. For a given value of (a, λ), the DAEM algorithm exposed in

Section 3.1 provides an estimate ∆̂β of ∆β which delivers an estimate of Â, i.e., the set of

indices with ˆ∆βjk 6= 0 for j ∈ [2,m] and for k ∈ [1,K]. This set tells us which covariates

should be included in the linear regression and which should not. Let us denote by X̃Â
τ the

covariates related to the �rst-di�erence estimates that are di�erent from zero. We use the

13



following criterion for selecting a and λ:

f(y|a, λ, τ ) = (
gÂ

1 + gÂ
)kÂ/2[

gÂ
1 + gÂ

sX̃τ0
+

1

(1 + gÂ)
s
X̃τ0 ,X̃

Â
τ

]−
T−K

2 , (11)

where sX̃τ0
stands for the residual sum of squares (RSS) from the ordinary least squares

(OLS) with X = X̃τ0 (i.e., a regression without break), s
X̃τ0 ,X̃

Â
τ
is the RSS from the OLS

with X = (X̃τ0 , X̃
Â
τ ), the value kÂ = |Â| denotes the number of �rst-di�erence parameters

di�erent from zero in the model and gÂ is a user parameter. We properly derive the criterion

in Appendix B. Fernandez, Ley, and Steel (2001) show that the criterion (11) is consistent

in the sense that it selects asymptotically the true subset of regressors when gÂ = w(T )−1 as

stated in proposition 2.

Proposition 2. (Adaption of Fernandez, Ley, and Steel, 2001). Conditional on the true

break dates, the criterion (11) is asymptotically maximized for the true subset of covariate A

if the following conditions on the parameter gÂ = w(T )−1 holds

i) limT→∞w(T ) =∞.

ii) limT→∞
w′(T )
w(T ) = 0.

iii) limT→∞
T

w(T ) ∈ [0,∞).

Proof. See Appendix C.

Remark 3. Proposition 2 can be readily adapted when the conditioning set is a potential

break date set complying with Assumption A6.

In Fernandez, Ley, and Steel (2001), they advocate for setting gÂ = min(T−1, (kÂ+K)−2)

as this prior empirically delivers good results for selecting the true covariates in standard linear

regressions. However, we deviate from this benchmark prior by �xing gÂ = 1
Tα−1 with α = 1

when kÂ = 0 and α =
kÂ+m̂Â−1

kÂ
> 1 when kÂ > 0 in which m̂Â denotes the number of

active segments. When α > 1, we show in Appendix C.1 that the criterion in Equation (11)

asymptotically converges in probability to

ln f(y|a, λ, τ )→p −
T

2
ln s

X̃τ0 ,X̃
Â
τ
−
αkÂ

2
lnT. (12)

14



The asymptotic value is equivalent to the Bayesian information criterion (BIC) of a linear

regression model exhibiting a number of parameters of αkÂ.
2 Consequently, the model penalty

takes additionally into account the number of active breakpoints when α =
kÂ+m̂Â−1

kÂ
. This

stronger penalty works empirically well and is motivated by several CP papers advocating for

stronger penalties than the BIC as it tends to over�t the number of regimes in �nite sample

(see, e.g., Liu, Wu, and Zidek, 1997; Zhang and Siegmund, 2007; Kim and Kim, 2016).

Interestingly, criterion (11) stands for a marginal likelihood in the Bayesian paradigm

under ε ∼ N (0, σ2IT ) and the following prior,

f(β1) ∝ 1,

f(σ2) ∝ σ−2,

f(∆βÂ|σ
2, τ ) ∼ N (0, σ2(gÂ(X̃Â

τ )′MX̃τ0
X̃Â
τ )−1)

f(∆βÂc) ∼ Dirac(0),

(13)

where MX̃τ0
= IT − X̃τ0((X̃τ0)′X̃τ0)−1(X̃τ0)′. The prior distributions given by Equations

(13) lead to simple posterior inference. The posterior distribution of the model parameters

are given by, see Appendix B.1 for derivations,

σ2|y, τ ∼ IG(
T −K

2
,

gÂ
1+gÂ

sX̃τ0
+ 1

(1+gÂ)sX̃τ0 ,X̃
Â
τ

2
),

∆β|y, σ2, τ ∼ N ((1 + gÂ)−1[(X̃Â
τ )′MX̃τ0

X̃Â
τ ]−1(X̃Â

τ )′MX̃τ0
y,

σ2

(1 + gÂ)
[(X̃Â

τ )′MX̃τ0
X̃Â
τ ]−1),

β1|y, σ2,∆β, τ ∼ N ((X̃′τ0X̃τ0)−1X̃′τ0(y − X̃Â
τ∆β), σ2(X̃′τ0X̃τ0)−1),

∆βÂc |y, τ = 0,

in which IG(−,−) denotes the Inverse-Gamma distribution. Consequently, we can go beyond

selecting the best pair (ap, λp) (i.e., the pair that maximizes the criterion (11)) and can take

the uncertainty of this selection into account. Given a set of models Mz = (az, λz), with

z = 1, ..., Z, we can directly assess the posterior probability of a speci�c model as follows

f(Mp|y, τ ) =
f(y|ap, λp, τ )f(Mp|τ )∑Z
z=1 f(y|az, λz, τ )f(Mz|τ )

, ∀p ∈ [1, Z], (14)

2The BIC of a linear regression model with K parameters is given by −T
2

ln(
s
X̃τ0 ,X̃

Â
τ

T
) − K

2
lnT . So

the marginal likelihood criterion of Equation (11) converges to the BIC up to an additive constant (that is
T
2

lnT ).
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where f(Mz|τ ) denotes the prior probability of model Mz. In this paper, we assume unin-

formative prior, so f(Mz|τ ) = Z−1. The posterior probability can be used to account for

uncertainty on the selected regressors. In fact, we have

f(β1,∆β, σ
2,M |y, τ ) = f(β1|y, τ , σ2,∆β,M)f(∆β|y, τ , σ2,M)

f(σ2|y, τ ,M)f(M |y, τ )
(15)

It is worth emphasizing that the consistent property of the criterion (11) does not depend on

the normality assumption. Only, the posterior distribution of the model parameters does. We

do not see this as a limitation since one can easily extend the model with another distributional

assumption and compute the posterior distribution by numerical integrations.

4.1 Prediction using Bayesian model averaging

Equation (15) shows how to take into account the uncertainty of the model parameters with

respect to the selection of the SELO parameters. The Bayesian paradigm also provides a

simple tool to forecast the series taking this uncertainty into account. In particular, the

predictive density f(yT+1:T+h|y), for h ≥ 1, is related to the posterior density as follows

f(yT+1:T+h|y, τ ) =

Z∑
z=1

∫
f(yT+1:T+h|y, τ ,β1,∆β, σ

2,Mz)f(β1,∆β, σ
2,Mz|y, τ )dβ1d∆βdσ2,

≈ 1

N

N∑
i=1

f(yT+1:T+h|y, τ ,β
(i)
1 ,∆β(i), (σ2)(i),M (i)), (16)

where {β(i)
1 ,∆β(i), (σ2)(i),M (i)}Ni=1 are independent draws from the posterior distribution

(i.e., β1,∆β, σ
2,M |y, τ ). From (16), it is apparent that the predictive density takes the

model uncertainty into account.3 This feature should be contrasted with the standard penal-

ized regression literature in which forecasting is performed using one unique set of parameter

estimates; i.e., the estimates given by one penalty parameter selected, for instance, by cross-

validation or by an information criterion.

In practice, simulations from the posterior distribution are not required for evaluating the

3Using the full marginal likelihood for weighting the models' predictions could raise concerns as only the
last segment matters in CP processes. However, as marginal likelihood is frequently used for selecting the
number of regimes in the literature and because it is also informative about the �t of the last regime, this
average should give large weights to the models exhibiting a good �t at the end of the sample. Nevertheless,
we could also weight the models' predictions using the predictive marginal likelihood f(yt1+1:T |y1:t1 , τ ) in
which t1 is a user-de�ned value.
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predictive density. Assuming that the future covariates xT+1:T+h are observed at time T ,

the predictive distribution of yT+1:T+h given a model Mz turns out to be a multivariate stu-

dent distribution. Appendix B.2 documents the analytical expression of f(yT+1:T+h|y,Mz).

Therefore, we can e�ciently take into account model uncertainty in the predictive density

since Equation (16) simpli�es into

f(yT+1:T+h|y, τ ) =
Z∑
z=1

f(yT+1:T+h|y, τ ,Mz)f(Mz|y, τ ). (17)

4.2 How to choose the values of λ and a

When the number of models to consider is too large to directly explore the model space using

the criterion (11) (i.e., when (m − 1)K > 10, see remark 1), we rely on the SELO penalty

function to uncover the promising explanatory variables. While the asymptotic result of

Proposition 1 is reassuring, it only applies for the true parameters λ and a. Similar to what

is generally done in the penalized regression literature, we propose to explore many values

of λ and a and consider each couple as a model that would be ultimately discriminated

via criterion (11). For the parameter a, we use a value of ai = κ × std(β̂j1) for each j of

the K parameters per regime where std(β̂j1) stands for the standard deviation of the OLS

estimate β̂j1 when we assume no break in the linear regression (i.e., X = Xτ0). We test

several values for the parameter κ, namely κ ∈ {0.1, 1}. Regarding the penalty parameter λ,

we test 50 di�erent values uniformly spaced in the interval (0, λ̄] in which λ̄ = 2 lnT . The

penalty imposes by the upper bound λ̄ is conservative enough as it is stronger than standard

information criteria such as the BIC (that corresponds to a penalty of 1
2 lnT ) and the modi�ed

BIC.

5 Break date detection

In this Section, we present one approach to obtain a set of potential break dates. Before going

into details, it is worth emphasizing that our method for detecting which parameters vary

when a break occurs is independent of the segmentation detection procedure used in the �rst

phase. To build the break date set, we could, for instance, adapt the dynamic programming

method of Bai and Perron (2003) for the marginal likelihood given by Equation (11) and

therefore propose our own CP detection method. We could also detect the locations of the

segments using one of the standard segmentation approaches such as Bai and Perron (1998),

Killick, Fearnhead, and Eckley (2012) or Korkas and Fryzlewiczv (2017). Even better, we
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could apply several CP detection algorithms and discriminate between the sets of breakpoints

by comparing their marginal likelihoods once the SELO optimization has been carried out on

each set. However, as the emphasis of the paper is not on the break detection, we prefer relying

on one break detection procedure, the one documented in Yau and Zhao (2016), because i)

it delivers a set of potential break dates with a computational complexity of O(T (log(T ))2)

(which is faster than O(T 2), i.e., the complexity of the dynamic programming method of

Bai and Perron (2003)) and because ii) we slightly improve their CP detection procedure.

In particular, their estimated breakpoints depend on one tuning parameter, the radius h.

Instead of �xing it, we use multiple values of h and we also adapt their approach to end up

with a potential breakpoint set.

It is worth noting that, as the paper combines model selection and change point detection

methods, our approach only requires a set of potential break dates that includes the correct

break dates. By penalizing the parameter variation between two consecutive regimes, the

spurious break dates are consistently deleted (see remarks 2 and 3).

5.1 Segmentation procedure

Yau and Zhao (2016) propose a likelihood ratio scan method in three steps for estimating

multiple break dates in piecewise stationnary processes. They also establish the consistency

of the estimated number and location fractions of the change points. We apply their three

steps to detect the break dates but we modify them to reduce the computational burden and

to keep at the end of the procedure a potential break date set (that could overestimate the

true number of regimes). We now detail the three steps that we use to segment the data.

First step. Fix a window radius h ∈ [K + 1, T − K]. For t = h to T − h, compute the

likelihood ratio scan statistic given by,

Sh(t) =
1

h
Lt−h+1:t(β̂, σ̂) +

1

h
Lt+1:t+h(β̂, σ̂)− 1

h
Lt−h+1:t+h(β̂, σ̂), (18)

where L̂t1:t2(β̂, σ̂) denotes the maximum value of the log-likelihood of model (1) over the

segment t ∈ [t1, t2], assuming that εt ∼ N (0, σ2). Then, the set Γ(h) of potential break dates

is given by,

Γ(h) =

{
j ∈ {h+ h+ 1, . . . , T − h};Sh(j) = max

t∈[j−h,j+h]
Sh(t)

}
, (19)

where Sh(t) = 0 for t < h and t > T − h. As the window radius h is crucial, we di�er from

Yau and Zhao (2016) by using a grid of M values uniformly-spaced in the interval [hYZ2 , 2hYZ]
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in which hYZ denotes their advocated value that is hYZ = max
{

25, (log(T ))2
}
when T < 800

and hYZ = max
{

50, 2 (log(T ))2
}
otherwise. So, at the end of the �rst step, we end up with

M potential break date sets, i.e., Γ(h1), . . . ,Γ(hM ).

Second step. For every z ∈ [1,M ] and i ∈ [1,mhz − 1] where mhz = |Γ(hz)| + 1, we

re-estimate each break date location τ
(z)
i ∈ Γ(hz) as follows

τ̂
(z)
i = argmax

t∈[τ
(z)
i −hz ,τ

(z)
i +hz ]

L
τ

(z)
i −b1.5hze:t

(β̂, σ̂) + L
t+1:τ

(z)
i +b1.5hze

(β̂, σ̂),

in which bxe stands for the nearest integer to x. Gathering all the new locations in the set

Γ̂(hz) = {τ̂ (z)
1 , . . . , τ̂

(z)
mhz }, it is clear from Theorems 1 to 3 in Yau and Zhao (2016) that for any

j ∈ {1, . . . ,m− 1}, there exist τ̂ (z)
i ∈ Γ̂(hz) with i ∈ [1,mhz − 1] such that τ̂

(z)
i − τj = Op(1).

Third step. We select the best breakpoints among the M potential break date sets by

minimizing the Minimum Description Length (MDL) de�ned by, for z ∈ [1,M ],

MDL(hz) = ln+ (mhz − 1) +mhz ln (T )

+

mhz∑
j=1

(
K + 1

2
log(τ̂

(z)
j − τ̂

(z)
j−1)− L

τ̂
(z)
j−1+1:τ̂

(z)
j

(β̂, σ̂)

)
,

(20)

where τ̂0 = 0, τ̂mhz = T and {τ̂j}j=2,...,mhz−1 = Γ̂(hz). In practice, we �x M = 30.

5.2 Break uncertainty

Given a set of break dates obtained either from the procedure described in Section 5.1 or

from any other existing break detection method such as the one of Bai and Perron (1998), our

method to uncover the partial structural changes can be undertaken. Let us denote by M∗ =

(a∗, λ∗) the SELO parameters maximizing the marginal likelihood criterion (11) and their

corresponding break dates J = {τ̄0 = 0, τ̄1, . . . , τ̄m̂−1, τ̄m̂ = T}. To provide break uncertainty,

we shall infer the posterior distribution of the structural breaks; i.e., τ ≡ τ1, . . . , τm̂−1|y,M∗.
To do so, we �rst assume uninformative priors for the break dates using the set J . For

i = 1, ..., m̂− 1, the break parameter τi is driven by a Uniform distribution as follows

τi ∼ U [

⌊
τ̄i−1 + τ̄i

2

⌋
+ γ,

⌊
τ̄i−1 + τ̄i

2

⌋
− γ],
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in which bxc stands for the nearest integer less than or equal to x and γ = (K + 1) is a

minimum duration parameter ensuring that the marginal likelihood criterion (11) can be

computed for any break parameters complying with the prior distributions given by Equation

(13). The posterior density is proportional to

f(τ |y,M∗) ∝ f(y|M∗, τ )f(τ ) ,

∝ f(y|M∗, τ )

(
m̂−1∏
i=1

1{τ i∈[
⌊
τ̄i−1+τ̄i

2

⌋
+γ,

⌊
τ̄i−1+τ̄i

2

⌋
−γ]}

)
.

(21)

As shown in Appendix B, the marginal likelihood f(y|M∗, τ ) = f(y|a∗, λ∗, τ ) exhibits a

closed form expression. Several solutions exist to sample the break parameters (see, e.g.,

Stephens, 1994; Liao, 2008). In this paper, we use the D-DREAM algorithm developed in

Bauwens, Dufays, and De Backer (2011). It builds a symmetric proposal distribution inspired

by the Di�erential Evolution optimization literature and draws from this proposal distribution

are accepted or rejected through a Metropolis step in a Markov-chain Monte Carlo (MCMC)

algorithm. As shown in Bauwens, Dufays, and De Backer (2011), the D-DREAM algorithm

complexity isO(T ) and leads to a rapidly mixing MCMC algorithm since the break parameters

are jointly sampled from the proposal distribution. To infer the break parameters, we apply

the following steps:

� Sample R = 2m initial structural break vectors {τ i}Ri=1 from the prior distribution.

� At each MCMC iteration, for each j = 1, ..., R, apply the D-DREAM Metropolis move:

1. Propose a new draw of the break parameter as follows

τ̂ j = τ j +

γ(δ,m)(

δ∑
g=1

τ r1(g) −
δ∑

h=1

τ r2(h)) + ξ

 , (22)

with ξ ∼ N (0, (0.0001)I) and ∀g, h = 1, 2, ..., δ, j 6= r1(g), r2(h); r1(.) and r2(.)

stand for random integers uniformly distributed on the support [1, R]. We set

γ(δ,m) = 2.38√
2δm

and δ ∼ U [1, 3].

2. Accept the proposal τ̂ j according to the probability

α(τ j , τ̂ j) = min{f(y|M∗, τ̂ j)
f(y|M∗, τ j)

, 1}.

In practice, we set the number of MCMC iterations to 1000 and start collecting the draws
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after round[M2 ] MCMC iterations.

6 Monte Carlo study

In this Section, we document a Monte Carlo study to assess the accuracy of the SELO

approach. We rely on nine di�erent data generating processes (DGPs) that are documented

in Table 1. For each DGP, we simulate 1000 series with a sample size equal to T = 1024 and

we investigate i) the performance of detecting the break dates using the approach in Section

5.1 and ii) the performance of the SELO method for detecting which parameter truly varies

when a break occurs. The nine DGPs di�er in their mean parameter speci�cations. For each

of them, we study the SELO performance when the innovation is either homoskedastic or

driven by a GARCH process.

Regarding the DGPs, the �rst six DGPs are piecewise stationary AR models directly taken

from Yau and Zhao (2016) while the others cover situations with exogenous explanatory

variables. DGP A and E do not exhibit any breakpoint. They aim at showing the performance

of the SELO approach when only spurious break dates are detected. DGPs B and C are weakly

persistent piecewise stationary AR models exhibiting three regimes. Simulated series from

DGP D experience a break after 50 observations. This DGP should highlight the performance

in a short regime context. DGPs E and F are highly persistent piecewise stationary AR models

but DGP F di�ers by exhibiting breaks in the mean parameters. Eventually, DGPs G, H and

I include exogenous variables. While DGPs G only exhibits exogeneous regressors, DGPs H

and I stand for ARX processes by mixing the parameters of the DGPs B and G.
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Table 1: Data Generating Processes of sample size amounting to T = 1024.
This Table summarizes the DGPs from which 1000 series are simulated for the Monte Carlo
study. The variables V and W stand for exogenous variables such that, Vt ∼ N (0, 32) and
Wt ∼ N (0, 42). For instance, DGP B is an AR(2) model that exhibits two breakpoints at
t = 512 and t = 768. The true values of the �rst AR term for the �rst two regimes are
equal to 0.9 and 1.69, respectively. The dynamic of the variance is either homoskedastic
('Constant') or heteroskedastic ('GARCH').

DGP A DGP B DGP C

Breaks - [512, 768] [400, 612]

Intercept [0] [0, 0, 0] [0, 0, 0]
AR1 [- 0.7] [0.9, 1.69, 1.32] [0.4, - 0.6, 0.5]
AR2 - [0, - 0.81, - 0.81] -

DGP D DGP E DGP F

Breaks [50] - [400, 750]

Intercept [0, 0] [0] [0, 0, 0]
AR1 [0.75, - 0.5] [0.999] [1.399, 0.999, 0.699]
AR2 - - [- 0.4, 0, 0.3]

DGP G DGP H DGP I

Breaks [400, 750] [400,750] [512, 768]

Intercept [1, 0, 0] [0, 0, 0] [0,0,0]
AR1 - [0.9, 1.69, 1.32] [0.9, 1.69, 1.32]
AR2 - [0, -0.81, -0.81] [0, -0.81, -0.81]
V [1.5, 0.9, 2.2] [1.5, 0.9, 2.2] [1.5, 0.9, 2.2]
W [- 0.6, - 0.6, - 1] [- 0.6, - 0.6, - 1] [- 0.6, - 0.6, - 1]

Dynamic of the variance of εt ∼ N (0, σ2
t )

Constant σ2
t = 1, ∀t ∈ [1, T ]

GARCH σ2
t = 0.05 + 0.05ε2t−1 + 0.9σ2

t−1, ∀t ∈ [1, T ] and σ2
0 = 0.05

1−0.95 = 1

Table 2 documents the percentage of detecting a number of regimes per model parameter

over the 1000 simulated series per DGP for the SELO method. Overall, the detection rates of

identifying the true number of regimes per parameter are excellent and besides DGP F, they

are at least equal to 86.4%. Interestingly, this detection rate does not deteriorate when the

innovation is driven by a GARCH process. The worst detection rates arise for the DGP F.

Even though this DGP is highly persistent with an autocorrelation structure that barely varies

over time, the SELO method correctly identi�es that the intercept does not experience abrupt

switches 69.6% of the times. Note that the potential breakpoint sets for this DGP poorly

identify the true breakpoints since only 25.5% of the sets exhibit at least one potential CP
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Table 2: Break estimates : SELO approach.

Based on 1000 replications, this Table presents several metrics for assessing the perfor-
mance of the SELO method on DGPs detailed in Table 1. Number of regimes is the rate
of detecting a speci�c number of regimes per model parameter. Bold values correspond to
the true number of regimes. Break documents the rate of having at least one breakpoint in
the potential CP set located in the neighborhood of 50 observations of the true breakpoints.
We use '�' when the DGP exhibits no breakpoint. Exact denotes the rate of detecting the
true number of breakpoints for all the model parameters with a posterior probability of at
least 10%.

Constant Variance GARCH Variance

Number of regimes Break Exact Number of regimes Break Exact

DGP 1 2 3 4 5 6 1 2 3 4 5 6

A Intercept 99.4 0.6 0 0 0 0
� 99.9

99.2 0.8 0 0 0 0
� 99.2

AR1 99.5 0.5 0 0 0 0 99.4 0.6 0 0 0 0

B Intercept 98.6 1.4 0 0 0 0

100 99.7

97.3 2.7 0 0 0 0

99.3 99.5AR1 0 0 100 0 0 0 0 0.2 99.4 0.4 0 0

AR2 0 98.8 1.2 0 0 0 0 98.3 1.7 0 0 0

C Intercept 97.9 2 0.1 0 0 0
99.8 99.7

97.6 2.4 0 0 0 0
99.8 99.1

AR1 0 0 100 0 0 0 0 0 99.7 0.3 0 0

D Intercept 97.4 2.6 0 0 0 0
99.8 99.5

97.6 2.2 0.2 0 0 0
99.7 99.1

AR1 0.1 99.4 0.5 0 0 0 0.2 99.3 0.4 0.1 0 0

E Intercept 86.4 12.4 1.2 0 0 0
� 94.6

84.8 12.5 2.6 0.1 0 0
� 91.5

AR1 93.7 6 0.3 0 0 0 91 8.1 0.5 0.3 0.1 0

F Intercept 69.6 23.7 6.5 0.1 0.1 0

25.5 23.5

65.1 27.9 6.5 0.5 0 0

22.4 22.5AR1 0 68.3 31.4 0.1 0.2 0 0 69.3 29.7 0.9 0.1 0

AR2 0 71.4 28.4 0.2 0 0 0 73.2 26.4 0.4 0 0

G Intercept 0 99.3 0.7 0 0 0

100 99.8

0 99.2 0.8 0 0 0

100 99.8V 0 0 99.8 0.2 0 0 0 0 99.7 0.3 0 0

W 0 99.2 0.8 0 0 0 0 99 0.9 0.1 0 0

H Intercept 88.9 11 0.1 0 0 0

100 83.1

92.9 7 0.1 0 0 0

100 86.9

AR1 0 0 92.7 7.3 0 0 0 0 94.8 5.2 0 0

AR2 0 92.6 7.4 0 0 0 0 94.2 5.8 0 0 0

V 0 0 87.7 12.3 0 0 0 0 89.7 10.3 0 0

W 0 88 12 0 0 0 0 90.3 9.7 0 0 0

I Intercept 91.7 8.3 0 0 0 0

100 85.7

91 8.9 0.1 0 0 0

100 85

AR1 0 0 94.3 5.7 0 0 0 0 95 4.9 0.1 0

AR2 0 94.6 5.4 0 0 0 0 94.9 5 0.1 0 0

V 0 0 89.8 10.2 0 0 0 0 89.4 10.6 0 0

W 0 88.7 11.1 0.2 0 0 0 90 10 0 0 0

close to every true breakpoints. Therefore, the SELO detection rate could hardly exceed this

bound. As exempli�ed by DGPs G, H and I, the detection rates of the SELO method remain

excellent when exogenous variables kick in even in the presence of heteroscedasticity. The
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Table also documents the rate of detecting the true model (i.e. jointly the correct number

of regimes) with a posterior probability of at least 10%. For all the DGPs but DGP F,

the correct detection amounts to at least 83.1% and 85% for the constant and the GARCH

innovation dynamics, respectively. These excellent results highlight that model uncertainty

should be taken into account since several models often exhibit high posterior probabilities.

We end this simulation section with a "big data" example motivated by the fact that

when the number of explanatory variables is large, the current Bayesian alternatives do not

work (see Giordani and Kohn, 2008; Eo, 2016; Dufays and Rombouts, 2018). To do so, we

propose the DGP J that is speci�ed by 100 explanatory variables and one change point as

follows:

DGP J: piecewise linear model with big data

Yt =

x′tβ1 + εt if 1 ≤ t ≤ 499,

x′tβ2 + εt if 500 ≤ t ≤ T,

where T = 1024, ∀ t ∈ [1, T ] and for i = 1, ..., 100, xt,i ∼ N (0, 1) and εt ∼ N (0, 1). The

parameter values of β1 are uniformly and randomly set to −1 or 1. In the second regime, the

parameter values of β2 are equal to β1 except for 10 of them randomly chosen that are set

to the opposite value (i.e. −β1). Thus, 10 parameters of DGP J does experience a break at

observation 500.

We simulate 100 series from DGP J to assess the SELO performance in detecting which pa-

rameters experience a breakpoint. For every simulation, the selective segmentation approach

identi�es 10 parameters that experience one breakpoint in the sample while the others re-

main constant. In addition, the exact model speci�cation was always among the speci�cation

exhibiting a posterior probability of at least 10%.

7 Empirical application

We illustrate the selective segmentation method with 14 monthly Credit Suisse HF indices

spanning from March 1994 to March 2016. These indices are the weighted average of HF

returns following speci�c trading strategies. Fung and Hsieh (2004) suggested a risk-based

approach to model HF returns and identi�ed seven factors on which HF strategies are gener-

ally exposed (see also Fung and Hsieh, 2001). Table 3 documents the fourteen strategies on

which we focus as well as the seven factors of Fung and Hsieh (2004).
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Table 3: Description of the HF returns and the risk factors.

Credit Suisse Hedge fund indices Factors of Fung and Hsieh (2004)

HFI Hedge Fund Index PMKT Market factor (S&P 500)

CNV Convertible Arbitrage SMB Small �rm minus big �rm

DSB Dedicated Short Bias TERM Change in 10-year treasury yields

EME Emerging Markets DEF Change in the yield spread of

EMN Equity Market Neutral 10-year treasury and Moody's Baa bonds

EDR Event Driven PTFSBD Lookback options on Bonds

EDD Event Driven Distressed PTFSFX Lookback options on currencies

EDM Event Driven Multi-Strategy PTFSCOM Lookback options on commodities

EDRA Event Driven Risk Arbitrage

FIA Fixed Income Arbitrage

GMA Global Macro

LES Long/Short Equity

MFU Managed Futures

MUS Multi-Strategy

It is well acknowledged in the �nancial literature that HF strategies (or trading techniques)

are time-varying. Their changing risk exposures are directly related to market events and

economic �uctuations (see, e.g., Agarwal and Naik (2004), Fung, Hsieh, Naik, and Ramodarai

(2008) or Patton, Ramodarai, and Streat�eld (2015) among others). Hedge fund time-varying

risk dynamics has important implications for performance appraisal. As pointed out by

Mitchell and Pulvino (2001), the changes can be in response to arbitrage opportunities. The

cycles of mergers and acquisitions in the 1990s and the 2000s and the corresponding level

of risk arbitrage led by HF are illustrations of these changing dynamics. In standard linear

asset pricing models, the intercept and risk factor loadings are not constant but time-varying.

Moreover, HF returns exhibit signi�cant non-linearities. Therefore, there is a need of dynamic

models able to capture non-linearities and changes in risk exposures.

Following Meligkotsidou and Vrontos (2008) we suggest the use of CP risk factor models. This

class of models is suited for studying the changes in risk exposures and their time-varying

parameters. However, instead of directly focusing on the seven factors, we take a slightly

di�erent approach since we additionally take into account autocorrelations of the returns.4

To do so, we �rst look at the best autoregressive model that �ts the returns. In particular,

for each HF returns, we estimate ARX(q) models with q ranging from 0 to 4 and in which

the explanatory variables are the seven factors (and an intercept) and we select the best AR

order using the Bayesian information criterion (BIC). Table 4 documents the best order for

4As reported by Getmansky, Lo, and Makarov (2004), the analysis of serial dependence of returns is a
reasonable way of assessing the liquidity of hedge fund investments.
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each strategy.

Table 4: Order of the optimal ARX-model for each HF strategy.

The optimal AR order is chosen by maximizing the Bayesian information criterion over the
whole sample. When looking for the best autoregressive lag order, the explanatory variables
include the seven factors and an intercept.

Strat. HFI CNV DSB EME EMN EDR EDD

Lag order 0 1 1 1 0 1 2

Strat. EDM EDRA FIA GMA LES MFU MUS

Lag order 1 1 1 0 1 0 0

As reported by Fung and Hsieh (2004), composites obtained from the individual funds may

be contaminated with severe survivorship, selection and instant history biases. Therefore, to

avoid these problems, we use the Credit Suisse indices that provide full transparency about

their constituents.

Section 7.1 discusses in-sample results of our selective segmentation method and we com-

pare them to those of standard CP models and time-varying parameter models. We then

illustrate the di�erence of our approach with the CP method of Meligkotsidou and Vrontos

(2008) in Section 7.2. Section 7.3 documents a forecasting exercise in which we assess the

predictive performance of the selective segmentation approach with respect to �exible alter-

natives. Importantly, all the subsequent results include the optimal AR order documented in

Table 4 as additional explanatory variables.

7.1 Hedge funds strategies evolve over time

Fung and Hsieh (2004) focus on linear models. However, as the period covers critical events

such as the Long Term Capital Management (LTCM) collapse, the dot-com crisis and the

�nancial crisis, one could argue that CP models are more appropriate. In this Section, we

focus on two speci�c indices, namely the Hedge Fund Index (HFI) and the HF returns that

are applying a Fixed-Income Arbitrage (FIA) strategy. Results for all the other returns are

available upon request.

Tables 5 and 6 show how the selective segmentation method can improve the interpretation

of CP models. The Tables document how the results evolve from a standard linear risk model

to a selective segmentation model passing by a standard CP process. As expected, for the

two HF returns, ignoring breakpoints can be misleading as the CP results emphasize that

they modify the risk exposition of the returns. Also, although one can study in details the

results of the standard CP model, the selective segmentation model o�ers a straightforward
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picture of the relevant risk factors and how the risk exposition evolves. It also estimates more

accurately the parameters that do not change when a break occurs. As the CP model detects

three breakpoints for the HFI and six abrupt changes for the FIA strategy, the number of

models to consider amounts to 224 and 254 respectively. Our selective segmentation strategy

explores these large model spaces in less than several minutes on a standard laptop. Let us

now discuss in more details the results of the two returns.

Hedge Fund Index

As documented in Table 5, the CP model with breakpoints determined by the approach in Sec-

tion 5.1 �nds four regimes (hereafter CP-YZ). The relevant breakpoints occur in April 2000,

in April 2005 and March 2006. Interestingly, these dates coincide with the dot-com crash at

the end of March 2000 and when the U.S. housing market bubble reached new heights. It

is well acknowledged in the �nancial literature that the end of the dot-com bubble had im-

portant consequences for �nancial markets in the early 2000s and until the Global Financial

Crisis (2008). While all the parameters change for the CP model, the selective segmenta-

tion mainly identi�es that the factors related to the breaks are the market factor (PMKT),

the credit spread factor (TERM) and the default risk factor (DEF). Moreover, it discards a

spurious break occurring in March 2006 making the model even more parsimonious. We can

notice that the market factor decreases from 0.44 during the �rst period to 0.19 during the

second period. HFI is indeed more conservative during the 2000s and less correlated with the

�nancial markets. We observe the same trend for the credit risk factor increasing from -13.00

to -2.78. These results are consistent with the important variations of interest rates during

these two sub-periods and the important increase of credit risk in the 2000s. As a �nal note,

credible intervals of the breakpoints are narrow which indicates a sharp change in the risk

exposition at these periods (see also Figure 2 below).
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Table 5: Hedge Fund Index: linear, CP and selective segmentation regression

models.

The Table details the parameter estimates of the linear model, of the CP model and of the
selective segmentation process with HFI returns as the dependent variable. Parentheses and
brackets indicate standard deviations and 90% credible intervals, respectively. A cell �lled
with '�' indicates that the parameter does not vary over the related period. The posterior
probability of the selective segmentation model amounts to 60%.

Period Int. PMKT SMB TERM DEF PTFSBD PTFSFX PTFSCOM

Standard linear risk model

03-1994 to 03-2016 0.50 0.24 0.08 -0.96 -3.26 -0.01 0.02 0.01

(0.09) (0.02) (0.03) (0.46) (0.59) (0.01) (0.01) (0.01)

CP-YZ risk model

03-1994 to 04-2000 0.78 0.42 0.13 -2.93 -12.89 -0.02 0.02 0.03

(0.22) (0.05) (0.05) (1.29) (2.59) (0.01) (0.01) (0.02)

05-2000 to 04-2005 0.50 0.15 0.08 -2.02 -1.71 -0.01 0.02 0.01

(0.25) (0.05) (0.08) (1.24) (2.42) (0.02) (0.01) (0.02)

05-2005 to 03-2006 0.78 0.92 -0.38 -3.71 15.40 -0.04 -0.15 0.04

(0.83) (1.10) (0.85) (8.30) (28.36) (0.08) (0.20) (0.10)

04-2006 to 03-2016 0.25 0.25 -0.09 0.34 -2.46 -0.00 0.01 0.00

(0.17) (0.05) (0.08) (0.88) (0.84) (0.01) (0.01) (0.01)

Selective segmentation risk model (60%)

03-1994 to 04-2000 0.47 0.44 0.07 -2.76 -13.00 -0.01 0.01 0.01

[12-1999 08-2000] (0.08) (0.04) (0.03) (0.55) (1.53) (0.01) (0.00) (0.01)

05-2000 to 04-2005 � 0.19 � � -2.78 � � �

[07-2003 07-2005] � (0.02) � � (0.55) � � �

05-2005 to 03-2016 � � � 0.23 � � � �

� � � (0.60) � � � �

Figures 2 and 3 show the posterior medians over time and their corresponding credible

intervals of the mean parameters given by our method (see Section 5.2 for the related Bayesian

model and how the breakpoints are integrated out) and the time-varying parameter (TVP)

model (see Appendix D for the model speci�cation). As with the CP model, one can easier

interpret the time-varying dynamics of the parameters given by the selective segmentation

method than those of the TVP model. For instance, while the exposition to the default factor

seems �xed over the sample due to the smooth transition of the parameter, it is clear that

the exposition is changing when we look at the selective segmentation results. Regarding the

market factor, we also observe with the TVP model that the exposition seems di�erent before

28



and after the dot-com crash but the credible intervals are too wide to con�rm the statement.
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(a) Intercept (b) PMKT

(c) SMB (d) TERM

(e) DEF (f) PTFSBD

(g) PTFSFX (h) PTFSCOM

Figure 2: HFI returns - Selective segmentation model. Posterior medians and the
90% credible intervals of the model parameters over time taking into account break uncer-
tainty as presented in Section 5.2.
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Figure 3: HFI returns - TVP model. 90% credible intervals of the model parameters
over time in relation with the posterior median, reported in bold black line.



Fixed Income Arbitrage (FIA) strategy

The FIA strategy is based on the exploitation of ine�ciencies in the pricing of bonds and

interest rate derivatives (including futures, options, swaps and also mortgage back securities).

It was very appreciated among hedge fund managers until the collapse of the LTCM fund in

September 1998. After this incident, a change of behavior among managers has been observed

for this strategy on �nancial markets.

The results of the FIA returns from a standard linear regression to the selective segmentation

model are documented in Table 6. Focusing on the latter model, a change point is detected in

August 1999 and three other breakpoints capture the �nancial crisis. The selective segmen-

tation speci�cation highlights the role played by the market factor (i.e., PMKT, for the �rst,

second, fourth and �fth period with estimates of: 0.09, -0.01, 0.24 and 0.04, respectively), the

variation of the size e�ect, the default risk factor and two trend following factors. In addition,

the credit spread factor, TERM is signi�cant and constant over time. The currency trend

following factor, PTFSFX, captures the changes in the monetary policy and is signi�cant over

the whole period. The selected speci�cation shows that the exposition to this factor dramat-

ically changes when the global �nancial crisis dawned. We also observe a variation of the size

e�ect, SMB, with a peak during the global �nancial crisis and an estimate -0.85, and of the

commodity trend following factor, PTFSCOM since the �rst semester 2007. Figures 4 and

5 document the time-varying dynamics of the parameters given the selective segmentation

method and the TVP model, respectively. From the TVP dynamics, the relevant factors do

not easily pop up.
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Table 6: Fixed Income Arbitrage: linear, CP and selective segmentation risk

models.

The Table details the parameter estimates of the linear model, of the CP model and of the
selective segmentation process with FIA returns as the dependent variable. Parentheses
indicate standard deviations and brackets [-] document the 95% credible intervals of the
breakpoints that are computed from the Bayesian model given in Section 5.2. A cell �lled
with '�' indicates that the parameter does not vary over the related period. The posterior
probability of the selective segmentation model amounts to 63%.

Period Int. AR1 PMKT SMB TERM DEF PTFSBD PTFSFX PTFSCOM

Standard linear risk model

03-1994 to 03-2016 0.31 0.31 0.08 0.01 -1.39 -3.95 -0.01 -0.00 -0.01

(0.09) (0.05) (0.02) (0.03) (0.43) (0.64) (0.01) (0.00) (0.01)

CP-YZ risk model

03-1994 to 08-1999 0.40 0.42 0.09 0.11 -2.08 -6.74 -0.01 -0.00 0.01

(0.15) (0.09) (0.03) (0.04) (0.79) (1.91) (0.01) (0.01) (0.01)

09-1999 to 04-2002 0.59 0.56 0.04 0.03 -0.11 0.24 0.01 0.04 -0.01

(0.26) (0.15) (0.03) (0.04) (1.16) (2.05) (0.01) (0.01) (0.01)

05-2002 to 04-2003 0.76 0.30 -0.07 0.19 0.85 -1.68 -0.02 -0.02 -0.01

(1.08) (0.39) (0.14) (0.13) (7.21) (2.77) (0.09) (0.02) (0.07)

05-2003 to 06-2007 0.09 0.55 -0.00 0.12 -1.46 -2.07 -0.00 0.01 -0.00

(0.17) (0.14) (0.07) (0.07) (0.79) (2.21) (0.01) (0.01) (0.01)

07-2007 to 07-2008 0.22 0.63 0.11 -0.90 1.46 -1.89 0.01 -0.15 0.05

(0.41) (0.27) (0.10) (0.34) (3.12) (3.58) (0.04) (0.05) (0.02)

08-2008 to 10-2010 0.75 -0.28 0.30 -0.37 -2.61 -7.71 -0.03 0.02 -0.11

(0.21) (0.08) (0.04) (0.08) (0.91) (0.88) (0.01) (0.01) (0.02)

11-2010 to 03-2016 0.07 0.12 0.10 -0.05 0.30 -2.31 0.00 -0.00 -0.01

(0.13) (0.12) (0.04) (0.06) (0.85) (1.32) (0.01) (0.01) (0.01)

Selective segmentation risk model (63%)

03-1994 to 08-1999 0.28 0.30 0.09 0.00 -1.40 -10.48 -0.00 -0.00 0.01

[12-1998 10-1999] (0.05) (0.04) (0.02) (0.02) (0.26) (1.06) (0.00) (0.00) (0.00)

09-1999 to 06-2007 � � -0.01 � � -3.09 � � �

[01-2007 07-2007] � � (0.02) � � (0.36) � � �

07-2007 to 07-2008 � � � -0.85 � � � -0.17 0.05

[05-2008 07-2008] � � � (0.16) � � � (0.02) (0.02)

08-2008 to 10-2010 � � 0.24 -0.27 � � � -0.00 -0.06

[01-2010 10-2010] � � (0.03) (0.06) � � � (0.00) (0.01)

11-2010 to 03-2016 � � 0.04 -0.02 � � � � 0.00

� � (0.03) (0.05) � � � � (0.01)
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(a) Intercept (b) PMKT

(c) SMB (d) TERM

(e) DEF (f) PTFSBD

(g) PTFSFX (h) PTFSCOM

Figure 4: FIA returns - Selective segmentation model. Posterior medians and the
90% credible intervals of the model parameters over time taking into account break uncer-
tainty as presented in Section 5.2.
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Figure 5: FIA returns - TVP model. 90% credible intervals of the model parameters
over time in relation with the posterior median, reported in bold black line.



7.2 Comparison with advanced CP models

We now compare our results with those of Meligkotsidou and Vrontos (2008). Meligkotsidou

and Vrontos (2008) rely on CP models to capture the risk exposition of HF returns over time.

In particular, they consider the 128 distinct combinations of the seven risk factors and for

each of them, they estimate a CP model exhibiting several numbers of segments m (from

one to ten). Eventually, they use the marginal likelihood to select the best model among

the set of m × 2K estimated processes (i.e., 1280 models since m = 10 and K = 7). Their

approach consists therefore in �rst selecting the relevant factors and then, in investigating if

the exposition to them is time-varying.

There is a striking di�erence with our approach since, for each breakpoint, our procedure can

detect what are the time-varying factors. In fact, our approach discriminates between 2m×K

models; a number of models that exponentially increases with the amount of breaks. Note

that we could also search for the best regressors to include by considering all the 128 distinct

combinations of the seven factors. In such a case, the number of models to consider would

reach 2(m+1)×K .

We reproduce the results of Meligkotsidou and Vrontos (2008) on our data by additionally

taking the autocorrelation structure into account. Fixing the AR order q to the value given

in Table 4, for each possible combination of the factors, we estimate CP-ARX(q) models with

di�erent numbers of breaks (ranging from 1 to 10) by (globally) minimizing the MDL criterion.

Then, we report the combination of factors exhibiting the best MDL value. Hereafter, we

denote this model by CP-MV.5

Table 7 documents the factors of the CP-MV model for the two HF strategies. It also reports

the factors which exhibit signi�cant parameter estimates at least at one period for the TVP

model and the selective segmentation approach. For the HFI, the selected factors by the

TVP and the selective segmentation methods are identical and they only di�er with respect

to the selection of PTFSCOM for the FIA strategy. The CP-MV approach does not select

the PTFSX and the PTFSCOM factors for the FIA strategy and the SMB factor for the

HFI. Regarding the HFI strategy, it is surprising that SMB, the spread between small-cap

and large-cap stock returns, is not selected as a signi�cant factor. As pointed out by Fung

5Our approach is slightly di�erent as the one used in Meligkotsidou and Vrontos (2008) since we mini-
mize the MDL criterion instead of maximizing the marginal likelihood of a Bayesian CP model for �nding
the best combination of the factors and the breakpoints. This is motivated by the fact that the MDL crite-
rion consistently selects the true number of regimes while there is no equivalent proof for the marginal like-
lihood used in Meligkotsidou and Vrontos (2008). In addition, Ardia, Dufays, and Ordas (2019) show that
the MDL criterion is equal to minus the marginal log-likelihood of a CP Bayesian model with particular g-
prior distributions. So, our approach can be understood as the method of Meligkotsidou and Vrontos (2008)
with di�erent hyper-parameters. We globally minimize the MDL criterion using the dynamic programming
of Bai and Perron (2003).
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and Hsieh (2004), it is the second most important equity risk factor after PMKT for many

hedge fund strategies. The analysis of the single strategy hedge fund index, i.e. Fixed Income

Arbitrage (FIA), also highlights some di�erences as PMKT and TERM are not among the

selected factors by the CP-MV process. It may be surprising since the market premium

is (almost) always used in linear asset pricing models (even for the analysis of hedge fund

returns). We may also note that the look-back straddle on commodities, PTFSCOM, designed

to capture non-linearities especially during changes in international economic policies is not

selected whereas the phenomenon is observed just after the global �nancial crisis.

Table 7: HFI and FIA strategies: Selected factors given several time-varying pa-

rameter models.

Selected factors by the TVP, the selective segmentation process and the CP-MV model of
Meligkotsidou and Vrontos (2008). The factors of the latter process are chosen by minimiz-
ing the MDL criterion while for the TVP and the selective segmentation model, a factor is
selected if its related parameter estimate is signi�cant at least at one period over the sam-
ple.

HFI FIA

TVP Sel. Seg. CP-MV TVP Sel. Seg. CP-MV

PMKT
√ √ √ √ √

SMB
√ √

TERM
√ √ √ √ √

DEF
√ √ √ √ √ √

PTFSBD

PTFSFX
√ √ √ √ √ √

PTFSCOM
√

Table 7 does not inform on the dynamic of the selected factors by the CP-MV process.

Although the preferred speci�cation of the CP-MV model does not include all the factors, the

risk exposure of the HF strategies is still abruptly changing over time. Regarding the HFI,

four breakpoints are detected and two of them occur in December 2000 and in April 2005.

As documented in Table 8, when we apply the selective segmentation approach on top of the

four breakpoints, only these two breakpoints are relevant as the mean parameters in the other

regimes remain constant. This result is in line with those found by our approach when all the

risk factors are used as reported in Table 5. We believe that the extra breakpoints are therefore

related to the variance dynamic. The FIA strategy exhibits seven regimes which makes the

CP-MV model heavily parametrized (i.e., K × m = 35 parameters). This large number of

regimes is perhaps related to the fact that more breakpoints are needed to adequately �t the

FIA returns since the CP-MV speci�cation does not include all the risk factors or because the
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breakpoints also capture the variance dynamic. Using the selected factors and the breakpoints

of the best CP-MV speci�cation, we estimate the selective segmentation model to uncover

what are the static and the dynamic parameters. Table 9 shows how the selective segmentation

method improves the interpretation of the CP-MV results. First, we must acknowledge that

the best speci�cation selected by the CP-MV model is doubtful with regards to the �nancial

literature and the practice. Nevertheless, we compare the CP-MV approach with the selected

segmentation to highlight the contribution of the latter. In particular, we observe that the

'alpha' is varying and statistically positive except during the global �nancial crisis where it is

negative but not statistically signi�cant. This is an illustration of the lack of absolute returns

during the crisis. As expected, the default risk factor is negative, time varying and very

high during crises (-12.17 during the LTCM collapse and �6.47 during the global �nancial

crisis). After the global �nancial crisis, the default factor is constant, negative and not

statistically signi�cant. This result is consistent with the trend observed on �nancial markets

(especially on �xed incomes markets after the global �nancial crisis). The currency trend

following factor, PTFSFX, is very low, time varying and statistically signi�cant during the

global �nancial crisis (as expected) and before the impact of the quantitative easing policies

starting in the late 2010. After this date (11/2010) the factor is not statistically signi�cant.

This is an illustration of the impact of quantitative easing on �xed income arbitrage.
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Table 8: Hedge Fund Index: Best CP-MV model and best selective segmentation

model.

The Table details the parameter estimates of the preferred CP-MV model and of the se-
lective segmentation process given the selected factors and the breakpoints found by the
CP-MV model. Parentheses indicate standard deviations. A cell �lled with '�' indicates
that the parameter does not vary over the related period. The posterior probability of the
selective segmentation model amounts to 59%.

Preferred CP-MV model Selective segmentation (59%)

Period Int. PMKT TERM DEF PTFSFX Int. PMKT TERM DEF PTFSFX

03-1994 to 12-2000 0.85 0.40 -2.90 -13.46 0.02 0.53 0.42 -2.56 -12.46 0.02

(0.21) (0.05) (1.18) (2.42) (0.01) (0.08) (0.03) (0.59) (1.50) (0.00)

01-2001 to 10-2003 0.51 0.09 -1.46 -2.95 0.01 � 0.20 � -2.87 �

(0.33) (0.08) (1.71) (2.85) (0.02) � (0.02) � (0.57) �

11-2003 to 04-2005 0.40 0.27 -2.20 -4.33 0.02 � � � � �

(0.54) (0.21) (2.96) (7.59) (0.03) � � � � �

05-2005 to 01-2009 0.77 0.25 1.01 -3.08 0.00 � � 0.37 � �

(0.29) (0.08) (1.30) (1.55) (0.02) � � (0.62) � �

02-2009 to 03-2016 0.16 0.24 -0.17 -2.04 0.01 � � � � �

(0.22) (0.05) (1.33) (1.27) (0.01) � � � � �

7.3 Out-of-sample

Sections 7.1 and 7.2 highlight the in-sample advantages of detecting which parameter truly

varies when a break is detected. In addition to that, since the selective segmentation method

can more accurately estimate parameters that do not change when a break occurs, we could

also expect some prediction gains with respect to the standard CP model. In this Section,

we investigate this aspect using the root mean squared forecast errors (RMSFE) and the

cumulative log predictive density (LPD), two standard loss functions speci�ed as,

RMSFE =

√√√√ 1

T − t

T∑
t=t+1

(yt − ŷt)2,

CLPD =
T∑

t=t+1

log f(yt|y1:t−1),

in which ŷt is the conditional mean of yt given the information up to period t (i.e., E(yt|y1:t−1,xt)),

f(yt|y1:t−1) denotes the predictive density of the model and t + 1 denotes the beginning of

the out-of-sample forecasting period. In our prediction exercise, the training set is �xed to
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Table 9: Fixed Income Arbitrage: Best CP-MV model and best selective seg-

mentation model.

The Table details the parameter estimates of the preferred CP-MV model and of the se-
lective segmentation process given the selected factors and the breakpoints found by the
CP-MV model. Parentheses indicate standard deviations. A cell �lled with '�' indicates
that the parameter does not vary over the related period. The posterior probability of the
selective segmentation model amounts to 49%.

Preferred CP-MV model Selective segmentation (49%)

Period Int. AR1 DEF PTFSFX Int. AR1 DEF PTFSFX

03-1994 to 05-1995 0.40 0.23 7.57 -0.03 0.45 0.48 -0.14 -0.00

(0.19) (0.23) (3.14) (0.01) (0.07) (0.13) (1.99) (0.00)

06-1995 to 08-1997 1.28 -0.13 -0.68 0.00 � � � �

(0.53) (0.44) (2.57) (0.01) � � � �

09-1997 to 11-1998 -0.23 0.10 -7.52 -0.07 � 0.12 -12.17 �

(0.22) (0.08) (1.47) (0.02) � (0.04) (1.30) �

12-1998 to 02-2008 0.38 0.29 -1.46 0.00 � � -1.52 �

(0.08) (0.09) (0.48) (0.00) � � (0.58) �

03-2008 to 05-2009 -0.41 0.04 -6.97 -0.03 -0.29 � -6.47 -0.03

(0.20) (0.05) (0.51) (0.01) (0.23) � (0.54) (0.01)

06-2009 to 10-2010 1.23 0.06 0.09 -0.05 1.10 � -0.84 �

(0.35) (0.21) (0.94) (0.01) (0.22) � (0.56) �

11-2010 to 03-2016 0.24 0.28 -1.91 -0.01 0.28 � � -0.01

(0.10) (0.16) (0.73) (0.00) (0.11) � � (0.01)

20% of the sample size and the 80% remaining observations are used to assess the forecast

performance (i.e., t = 0.2T ). Since our data comprise 265 monthly returns, the out-of-sample

set of observations amounts to 212 months. Each time we move forward by one month, all

the considered models are re-estimated and a forecast for the next period is produced.

As competitors to our model, we consider three other processes: i) a linear regression, ii) a

standard CP model with breakpoints determined by the modi�ed method of Yau and Zhao

(2016) documented in Section 5.1 (hereafter CP-YZ), iii) a CP model with the number and the

locations of the breakpoints selected by minimizing the MDL criterion (hereafter CP-MDL).6

The minimization of the MDL criterion is carried out using the dynamic programming of

Bai and Perron (2003).7 In addition to the factors and an intercept, we also account for

6We do not compare with the CP model of Meligkotsidou and Vrontos (2008) as the selected factors
change over time. Since this Section aims at highlighting the improvements obtained from capturing which
parameters truly evolve when a break occurs, we prefer sticking to model speci�cations that use jointly the
seven risk factors as explanatory variables.

7See Eckley, Fearnhead, and Killick (2011) for a discussion on the implementation of the algorithm for
the MDL criterion. Minimum regime duration is set to 3(K+1) to avoid capturing outliers. This choice
is in favor of the standard CP model as the parameter estimates of the new regimes are based on at least
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the autocorrelation of the HF returns by �xing the AR order to the value given in Table 4.

Regarding the CLPD metric, we assume a normal distribution for the error term and we also

use the prior distributions given in Equation (13) for the linear and the full CP models.

Table 10 documents the RMSFE and the CLPD criteria for all the Credit Suisse HF re-

turns. For both metrics, we observe that the selective segmentation process does not always

produce the best predictions. However it can still improve the RMSFE for half of the series

and the CLPD for 5 out of 14 HF returns. In addition, Table 10 highlights that the selective

segmentation process provides the most robust predictions. In particular, our approach de-

livers at least the second best predictive performance for twelve series regarding the RMSFE

metric. Focusing on the CLPD criterion, the SELO method is at least second best for all the

HF returns but one. This is evidence that model averaging stabilizes the forecast by reducing

its variance as argued in Rapach, Strauss, and Zhou (2009). Note that the predictions of the

CP model are based on the same breakpoints as the selective segmentation model. Therefore,

it is remarkable that the latter model systematically dominates the standard CP model with

breakpoints determined by the approach in Section 5.1 in terms of either RMSFE or CLPD

criterion. Regarding the breakpoints estimated by minimizing the MDL criterion, the SELO

method favorably compares for 9 and 11 out of the 14 series regarding the RMSFE and the

CLPD respectively. From this small sample of series, we could argue that when CP process

is used to produce predictions, detecting which parameters truly vary over time is relevant as

it would likely improve the forecast performance.

8 Conclusion

Since the seminal work of Cherno� and Zacks (1964), many CP detection methods for linear

models have been proposed. Most of these CP models have in common to assume, at least

in practice, that all the model parameters have to change when a break is detected. In this

paper, we propose to go beyond this standard framework by capturing which parameters vary

when a structural break occurs. Even when conditioning to the break dates, detecting the

parameters that vary from one segment to the next is not straightforward since the number

of possibilities grows exponentially with the number of breaks and the number of explanatory

variables. To solve this dimensional problem, we propose a penalized regression method to

explore the model space and we select the best speci�cation by maximizing a criterion that

can be interpreted as a marginal likelihood in the Bayesian paradigm.

To carry out the model space exploration, we use an almost unbiased penalty function, a

3(K+1) observations.
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Table 10: RMSFE and CLPD for the fourteen HF strategies (t = 0.2T ).
The Table details the RMSFE and the CLPD for �ve processes. Bold values indicate the
model that delivers the best prediction performance. A star points out the second best
model.

Models RMSFE

HFI CNV DSB EME EMN EDR EDD

Linear 1.48 1.59 2.70 2.76 2.99 1.29 1.40*

CP-MDL 1.41* 1.79* 2.78 2.58 3.96 1.35 1.42

SELO-MDL 1.43 1.85 2.71* 2.65* 3.95* 1.33* 1.39

CP-YZ 1.55 3.33 4.23 3.20 4.91 1.77 3.11

SELO-YZ 1.37 2.46 3.16 2.66 4.68 1.44 1.88

EDM EDRA FIA GMA LES MFU MUS

Linear 1.43* 1.01* 1.22* 2.47 1.84 3.30 1.20

CP-MDL 1.44 1.02 1.22 2.31* 1.80 3.40 1.23*

SELO-MDL 1.43 1.02 1.21 2.33 1.73* 3.34* 1.30

CP-YZ 1.95 1.34 2.63 3.14 1.97 3.90 1.47

SELO-YZ 1.57 1.00 2.35 2.30 1.68 3.42 1.34

CLPD

HFI CNV DSB EME EMN EDR EDD

Linear -379.42 -402.79 -509.95 -521.87 -560.25 -346.20 -351.16

CP-MDL -358.98 -427.01 -516.63 -504.94 -666.98 -358.19 -346.83*

SELO-MDL -362.38 -424.38* -510.02* -508.96* -660.77* -356.52* -346.20

CP-YZ -368.04 -479.76 -555.85 -530.85 -914.44 -392.15 -401.66

SELO-YZ -360.55* -467.14 -528.03 -510.18 -902.43 -362.43 -352.77

EDM EDRA FIA GMA LES MFU MUS

Linear -366.22* -298.82* -332.62 -487.74 -429.74 -555.18 -334.95*

CP-MDL -366.23 -301.30 -338.76 -471.55 -410.62 -559.24 -326.39

SELO-MDL -364.57 -300.24 -335.81* -470.80* -403.54* -557.64* -335.97

CP-YZ -394.03 -337.94 -464.04 -495.44 -443.56 -576.15 -351.87

SELO-YZ -372.84 -296.37 -416.79 -468.52 -400.65 -562.11 -343.74



desirable property in CP frameworks that is not exhibited by standard penalty functions

(e.g., LASSO and Ridge estimators). Also, we prove the consistency of our estimator and

we show how to estimate it using the DAEM algorithm. To apply the DAEM algorithm in

our context, we transform the penalty function into a mixture of Normal distributions. This

simple transformation greatly speeds the estimation as the DAEM algorithm iterates over

closed-form expressions.

Once the promising models have been uncovered by the penalized regression approach, select-

ing the parameters of the penalty function is carried out by maximizing a marginal likelihood.

Thanks to the Bayesian interpretation of this consistent criterion, we can take model uncer-

tainty into account and can do Bayesian model averaging, a feature that generally improves

forecast performance. A simulation study highlights that our selective segmentation method

works well in practice for a range of diversi�ed data generating processes.

We illustrate our approach with HF returns. The selective segmentation model has two

main advantages. First, as the standard CP models, it detects the breakpoints and the cor-

responding regimes. Second, it highlights the time-varying dynamics of the changing risk

factors. When we compare our model with previous advanced CP models, we observe that it

is particularly appealing to capture the time-varying dynamics of risk exposures. Then, we

test the predictive performance of the selective segmentation approach with respect to the

linear regression and standard CP processes. We note that our method produces the most

robust forecasts and almost systematically dominates the CP processes based on the same

breakpoints. These encouraging results suggest promising developments and applications in

�nancial economics.

Importantly, an R package for estimating the model is available on the corresponding author's

web page. This package stands for a building block of our future research that will include a

dynamic variance and multivariate models.
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A Proofs of the consistency of the Penalty function

In this appendix, we proof Proposition 1. To do so, we �rst state and prove two Lemmas.

Lemma 1. Under the conditions A1-A5 and let,

fT (β) =
1

T
||y −Xτβ||22 +

m∑
j=2

K∑
k=1

PSELO(∆βjk|ak, λ) (A.1)

Then of every ν ∈ (0, 1), there exists a constant C0 > 0 such that

lim inf
T→∞

P

 arg min

||β−β∗||2≤C
√
Kmσ2

T

fT (β) ⊆

{
β ∈ <Km×1; ||β − β∗||2 < C

√
Kmσ2

T

} > 1− ν

for all C ≥ C0.

Proof. The proof is given in Appendix A.1.

Lemma 2. Let C > 0 and fT as de�ned by Equation (7). Under the conditions A1-A5,

lim inf
T→∞

P

 arg min

||β−β∗||2≤C
√
Kmσ2

T

fT (β) ⊆
{
β ∈ <Km×1;βAc = 0

} = 1

where Ac = {(j, k), j = 1, . . . ,m and k = 0, . . . ,K − 1}\A is the complement of A in

{(j, k), j = 1, . . . ,m and k = 0, . . . ,K − 1}, βAc ∈ <|A
c|×1 is the |Ac|-dimensional sub-vector

of β containing components subscripted by Ac.

Proof. See Appendix A.2 for the proof.

A.1 Proof of Lemma 1

Proof 1. We consider the objective function

fT (β) =
1

T
||y −Xτβ||22 +

m∑
j=2

K∑
k=1

PSELO(∆βjk|ak, λ)
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Let αT =
√

Kmσ2

T and ν ∈ (0, 1). To prove the lemma 1, It su�ces to show that

P

(
fT (β∗) < inf

||u||2=1
fT (β∗ + CαTu)

)
= 1− ν

for C>0 su�ciently large and for any T su�ciently large. In other words, we shall show that

HT (u) = fT (β∗ + CαTu)− fT (β∗) is positive for any T when C is large enough and for all

||u||2 = 1, where u = (u11, u12 . . . , u1K , . . . , umK) ∈ RmK×1.

We can easily show that

HT (u) =
1

T

(
C2α2

T ||Xτu||22 − 2CαT ε
′Xτu

)
+

m∑
j=2

K∑
k=1

(
PSELO(∆β∗jk + CαTujk|ak, λ)− PSELO(∆β∗jk|ak, λ)

)
HT (u) ≥ 1

T

(
C2α2

T ||Xτu||22 − 2CαT ε
′Xτu

)
+∑

(j,k)∈D(u)

(
PSELO(∆β∗+jk |ak, λ)− PSELO(∆β∗jk|ak, λ)

)

where ∆β∗+jk = ∆β∗jk + CαTujk and

D(u) =
{

(j, k); j ≥ 2 and PSELO(∆β∗+jk |ak, λ)− PSELO(∆β∗jk|ak, λ) < 0
}
.

For any (j, k) ∈ D(u), clearly ∆β∗jk 6= 0, otherwise PSELO(∆β∗+jk |ak, λ)−PSELO(∆β∗jk|ak, λ) ≥

0. Thus, if C > 0 is su�ciently large and �xed, as limT→∞CαT = 0, we can consider that

∆β∗+jk and ∆β∗jk have the same sign for T su�ciently large; that is 0 6∈ (c−T , c
+
T ), where

c−T = min(∆β∗+jk ,∆β
∗
jk) and c+

T = max(∆β∗+jk ,∆β
∗
jk). By the fact that PSELO(x|ak, λ) is a

concave function on x ∈ (−∞, 0] and on x ∈ [0,+∞), thus also on (c−T , c
+
T ), we can establish

the following conditions using the mean value theorem.

PSELO(∆β∗+jk |ak, λ)− PSELO(∆β∗jk|ak, λ)

CαTujk
≤ max

(
P ′SELO(∆β∗+jk |ak, λ),P ′SELO(∆β∗jk|ak, λ)

)
PSELO(∆β∗+jk |ak, λ)− PSELO(∆β∗jk|ak, λ)

CαTujk
≥ min

(
P ′SELO(∆β∗+jk |ak, λ),P ′SELO(∆β∗jk|ak, λ)

)
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where P ′SELO stands for the PSELO �rst derivative.

Let us note that ∀ (j, k) ∈ D(u), ∆β∗jk > 0 =⇒ ujk < 0 and ∆β∗jk < 0 =⇒ ujk > 0 so

that PSELO(∆β∗+jk |ak, λ) − PSELO(∆β∗jk|ak, λ) < 0 holds. Applying the mean value theorem

in both cases, we end up with a common condition given by

PSELO(∆β∗+jk |ak, λ)− PSELO(∆β∗jk|ak, λ) ≥ −CαT |ujk||P ′SELO(∆β∗jk + CαTujk|ak, λ)|

≥ − CλαTakζ

ln(2)(ρ2 − 2ρCαT )

≥ − CλαTamaxζ

ln(2)(ρ2 − 2ρCαT )

where the last two inequalities come from the |P ′SELO(∆β∗jk + CαTujk|ak, λ)| minimization

with respect to ∆β∗jk. Then

HT (u) ≥
C2α2

T ||Xτu||22
T︸ ︷︷ ︸
Q1

− 2CαT ε
′Xτu

T︸ ︷︷ ︸
Q2

− CKmλαTamaxζ

ln(2)(ρ2 − 2ρCαT )︸ ︷︷ ︸
Q3

Focusing on each term, we can show that

Q1 ≡
C2α2

T ||Xτu||22
T

= C2α2
Tu
′X
′
τXτ

T
u ≥ C2α2

TλT,min

where λT,min is the smallest eigenvalue of
X′τXτ

T
.

To show this condition, we can decompose
X′τXτ

T
into UΛU ′ (by A3). Moreover, any vector

of Km dimension can be decomposed into a linear combination of the eigenvectors (i.e., u =

Uω). Note that u′u = ω′U ′Uω = ω′ω =
Km∑
i=1

ω2
i = 1.

Thus u′
X′τXτ

T
u = ω′U ′UΛU ′Uω = ω′Λω =

Km∑
i=1

ω2
i λi ≥ λT,min.
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The second term is given by

Q2 ≡
2CαT ε

′Xτu

T
≤ 2CαT |ε′Xτu|

T

≤ 2CαT ||ε′Xτ ||2||u||2
T

by Cauchy-Schwartz

≤
2Cα2

T√
Kmσ2

√
(ε′(XτX′τ )ε)

T

≤ Op(Cα2
T ) (By A3 and A4).

To show that

√
(ε′(XτX′τ )ε)

T = Op(1), we rely on the spectral theorem to decompose XτX′τ into

two orthogonal matrices and a diagonal matrix of eigenvalues. With this decomposition, we

can show that ε′XτX′τ
T ε ≤ maxiλi

ε′ε
T which is Op(1) under Assumption A3 and the fact that

the variance is bounded.

The last term Q3 is de�ned by

Q3 ≡
CKmλαTamaxζ

ln(2)(ρ2 − 2ρCαT )

= Cα2
T

λζ
amax

(Km)−1α3
T

ln(2)

((
ρ

αT

)2

− 2C

(
ρ

αT

))

By A2,

(
ρ

αT

)2

−2C

(
ρ

αT

)
→∞ and by A5, lim

T→∞
λζ

amax

(Km)−1α3
T

<∞. Hence Q3 = o(Cα2
T ).

Combining the conditions on Q1, Q2 and Q3 we establish that

HT (u) ≥ C2α2
TλT,min +Op(Cα2

T ) + o(Cα2
T )

. It follows that there exists C0 > 0 is large such that for all C > C0, P

(
inf

||u||2=1
HT (u) > 0

)
=

1− ν, for T su�ciently large.
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A.2 Lemma 2

Proof 2. Let β ∈ <Km×1 such that ||β−β∗||2 < C
√

Kmσ2

T . We consider β̃ ∈ <Km×1, where

β̃Ac = 0 and β̃A = βA. We can notice that

||β − β̃||2 = ||βAc − β̃Ac ||2 = ||βAc − β∗Ac ||2

||β − β̃||2 < CαT

On the other hand

||β∗ − β̃||2 = ||β∗A − β̃A||2 = ||β∗A − βA||2

||β∗ − β̃||2 < CαT

Let us de�ne GT (β) = fT (β) − fT (β̃). Similarly to the proof of the lemma 1, it su�ces to

show that GT (β, β̃) > 0.

GT (β) =
1

T

(
||y −Xτβ||22 − ||y −Xτ β̃||22

)
+

∑
(j,k)∈Ac
j≥2

PSELO(∆βjk|ak, λ)

=
1

T

(
||y −Xτ β̃ −Xτ (β − β̃)||22 − ||y −Xτ β̃||22

)
+

∑
(j,k)∈Ac
j≥2

PSELO(∆βjk|ak, λ)

= (β − β̃)′
X′τXτ

T
(β − β̃)− 2(β − β̃)′

X′τ (y −Xτ β̃)

T
+

∑
(j,k)∈Ac
j≥2

PSELO(∆βjk|ak, λ)

= (β − β̃)′
X′τXτ

T
(β − β̃)− 2(β − β̃)′

X′τ ε

T
− 2(β − β̃)′

X′τXτ

T
(β∗ − β̃)

+
∑

(j,k)∈Ac
j≥2

PSELO(∆βjk|ak, λ)

= (β − β̃)′
X′τXτ

T
(β − β̃)− 2αT

(β − β̃)′√
Kmσ2

X′τ ε√
T
− 2(β − β̃)′

X′τXτ

T
(β∗ − β̃)

+
∑

(j,k)∈Ac
j≥2

PSELO(∆βjk|ak, λ)
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By A1, A3 and A4,
X′τXτ

T
= Op(1) and

X′τ ε√
T

= Op(1). Moreover ||β − β̃||2 < CαT and

||β∗ − β̃||2 ≤ CαT . Then, for any T su�ciently large

GT (β) = Op
(
||β − β̃||2αT

)
+

∑
(j,k)∈Ac
j≥2

PSELO(∆βjk|ak, λ)

As PSELO(x|ak, λ) is a concave function on x ∈] −∞, 0] and on x ∈ [0,+∞[, for any ν1 <

ν2 ≤ ν3 ≤ 0 (resp. 0 ≤ ν1 ≤ ν2 < ν3),
PSELO(ν1)− PSELO(ν3)

ν1 − ν3
≥ PSELO(ν2)− PSELO(ν3)

ν2 − ν3

(resp.
PSELO(ν3)− PSELO(ν1)

ν3 − ν1
≤ PSELO(ν2)− PSELO(ν1)

ν2 − ν1
).

∀ (j, k) ∈ Ac, ∆β∗jk = 0 and ∆βjk is strictly positive or negative.

Thus, −CαT ≤ βjk < 0 or 0 < ∆βjk < CαT , since |∆βjk| ≤ ||β − β∗||2 < CαT . In both

cases, we end up with

PSELO (CαT |ak, λ)

CαT
≤
PSELO (∆βjk|ak, λ)

|∆βjk|

PSELO(∆βjk|ak, λ) ≥ λ

ln(2)CαT
ln

(
CαT

CαT + akζ
+ 1

)
|∆βjk|

PSELO(∆βjk|ak, λ) ≥ λ

ln(2)C
ln

(
CαT

CαT + amaxζ
+ 1

)
|∆βjk|

for any T su�ciently large. Thus

∑
(j,k)∈Ac
j≥2

PSELO(∆βjk|ak, λ) ≥ λ

ln(2)C
ln

 C

C + amaxζ
√

T
Kmσ2

+ 1

 ||β − β̃||2.

Furthermore, by A5 amax = Op

(√
mKσ2

T

σ2

T

)
. Thereby

amaxζ

√
T

Kmσ2

p→ 0 and lim inf
T→∞

 C

C + amaxζ
√

T
Kmσ2

+ 1

 > 0
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It follows that, there exists C̃ > 0 such that

GT (β, β̃)

||β − β̃||2
≥ C̃λ+Op

(√
Kmσ2

T

)

Thereby the result follows.

A.3 Proof of the Proposition 1

Proof 3. The theorem is immediatly given by the lemmas (1) and (2), in the sense that

there exists a sequence of local minima β̂ of fT (β) such that ||β̂ − β∗|| = Op
(√

Kmσ2

T

)
and

β̂Ac = 0 ∈ R|Ac|×1. Thus, as
√

Kmσ2

T → 0, it follows that ||β̂A − β∗A||2 = oP (1).

A.4 Consequence of bounded eigenvalues

We show that bounded eigenvalues of the matrix X′τXτ

T implies a �xed number of regimes.

Note �rst that

X′τXτ =
T∑
t=1

(1{t} ⊗ xt)(1{t} ⊗ xt)
′, (A.2)

=
T∑
t=1

(xtx
′
t)⊗ (1{t}1

′
{t}), (A.3)

where we de�ne 1{t} = (1{t>τ0},1{t>τ1}, . . . ,1{t>τm−1})
′. Let us de�ne ni =

∑T
t=1 1{t>τi−1},

i.e., the number of observations from the beginning of regime i to the end of the sample.

Working with xt ≡ 1, we have that

X′τXτ

T
=

1

T

T∑
t=1

(1{t}1
′
{t}), (A.4)

=
1

T



n1 n2 n3 . . . nm

n2 n2 n3 . . . nm

n3 n3 n3 . . . nm

. . .

nm nm nm . . . nm


(A.5)
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in which n1 = T . It leads to the following determinant, when m > 1,

|X
′
τXτ

T
| = T−mnm

m−1∏
i=1

(ni − ni+1), (A.6)

=
nm
T

m−1∏
i=1

(ni − ni+1)

T
. (A.7)

If each break increases with T such that ni = (1− δi−1)T with δ0 = 0 and δm = 1, we have

|X
′
τXτ

T
| = (1− δm−1)

m−1∏
i=1

(δi − δi−1) ≥ 0 ∀T. (A.8)

It shows that the number of segments cannot increase with T otherwise the determinant

tends to zero. In fact, assuming a growing number of regime such that the minimum regime

duration is given ετ = O(T q−1) with q ∈ [0, 1) (which implies m = O(T q)) leads to a

determinant tending to zero because

1. If m = O(T q), then
∏m−1
i=1 (δi − δi−1)→ 0 since δi − δi−1 < 1.

2. If τi−τi−1 > Tετ with ετ = O(T q−1) and q ∈ [0, 1), it implies that (δi−δi−1) = O(T q−1)

which tends to zero. Consequently, we have (δi − δi−1)→ 0.

A.5 Approximation of the penalty function with mixture of normal den-

sities

To derive the DAEM algorithm, a mixture of normal densities has been assumed for the mean

parameter. We now provide a simple mixture approximation of the SELO penalty. Note that

in practice, one can use the output of the DAEM algorithm as a starting point to optimize

the function of Equation (8). Due to the mixture approximation and the continuity of the

SELO penalty function, the starting point would be in general very close to the value that

globally minimizes the function (8). The prior density of one model parameter ∆βjk is as

follows

f(∆βjk) =

3∑
i=1

ω
(k)
i fN (∆βjk|µ

(k)
i , s

(k)
i ),

= λ
(k)
1 fN (∆βjk|0, s

(k)
1 ) + λ

(k)
2 fN (∆βjk| − ak, s2)1{(∆βjk≤−ak}

+λ
(k)
2 fN (∆βjk|ak, s2)1{(∆βjk≥ak}.
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We set the slab variance s2 to 1000. To �x the other parameters, we use the three next

conditions

i) λ
(k)
1 + λ

(k)
2 = 1,

ii) Cλ
(k)
1 fN (ak|0, s

(k)
1 ) = λ2fN (ak|ak, s2),

iii) Cλ = ln f(0)− ln f(ak),

where C is a constant that determines the overlapping of the spike and the slab component

at ak. The �rst condition ensures that the prior density is proper while the third condition

imposes a cost of −λ when the model parameter is equal to ak compared to when it is equal

to 0 (in log density). In comparison, the SELO penalty gives a penalty of 0.99λ. Under these

conditions, we easily �nd the value s
(k)
1 and λ

(k)
1 , λ

(k)
2 :

s
(k)
1 =

a2
k

2(λ+ ln(C2 + 1))
,

λ
(k)
1 =

√
s

(k)
1

e−a
2
k/(2s

(k)
1 )C

√
s2 +

√
s

(k)
1

λ
(k)
2 =

e−a
2
k/(2s

(k)
1 )C

√
s2

e−a
2
k/(2s

(k)
1 )C

√
s2 +

√
s

(k)
1

.

Note that the constant C can be interpreted as an error of type I. Let us relate δjk = 0 to the

spike component and δjk = 1 to the slab component when ∆βjk < 0. Then the probability

that δjk = 0 when ∆βjk = ak is given by

α ≡ P [δjk = 0|∆βjk = ak] =
fN (∆βjk|0, s

(k)
1 )λ

(k)
1

fN (∆βjk|0, s
(k)
1 )λ

(k)
1 + fN (∆βjk|ak, s2)

λ
(k)
2
2

,

C = 2
(1− α)

α
.

In practice, the error of type I (i.e., α) is set to 5%. Once all the parameters are �xed,

we slightly modify the expectation of the slab components to ensure a steady decline in the
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parameter penalization. In fact, we use the following mixture of normal densities

π(∆βjk) = λ
(k)
1 fN (∆βjk|0, s

(k)
1 ) + λ

(k)
2 fN (∆βjk| − qk, s2)1{(∆βjk≤−qk}

+λ2fN (∆βjk|qk, s2)1{(∆βjk≥qk},

qk = min(

√
2λs

(k)
1 , ak).

Figure A.1 documents the mixture approximation (minus the log of the density) with respect

to the SELO penalty function for di�erent values of a = (a1, . . . , aK) and λ. We observe

that the slab component can generate unbiased estimators for a wide range of values.

Figure A.1: Mixture approximation (in red) with respect to the SELO penalty function (in
blue).

B Marginal likelihood (11) for the linear model

Let us derive the criterion (11). We �rst de�ne X1 = X̃τ0 , X2 = XÂ
τ and MX1 = MX̃τ0

.

Given the prior distributions in Equation (13), the marginal likelihood is given by,

f(y|a, λ, τ ) =

∫ ∫
(2π)

−(T+k
Â

)

2 (σ2)−
(T+2+k

Â
)

2 |gÂ(X2)′MX1X2)|1/2

exp
−1

2σ2
{(y −X1β1 −X2∆β)′(y −X1β1 −X2∆β) + ∆β′gÂ(X2)′MX1X2)∆β︸ ︷︷ ︸

B

}d(β1,∆β)dσ2.
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Focusing on the expression in the exponential, we have

B = (y −X1β1 −X2∆β)′(y −X1β1 −X2∆β) + ∆β′gÂ (X ′2MX1X2)︸ ︷︷ ︸
ΣX

∆β,

= (y −X2∆β)′(y −X2∆β) + ∆β′gÂ (X ′2MX1X2)︸ ︷︷ ︸
ΣX

∆β + β′1X
′
1X1β1 − 2β′1X

′
1(y −X2∆β),

= (y −X2∆β)′(y −X2∆β) + ∆β′gÂΣX∆β + (β1 − β̄1)′Ω−1(β1 − β̄1)− β̄1
′
Ω−1β̄1,

where Ω−1 = X ′1X1, β̄1 = (X ′1X1)−1X ′1(y−X2∆β) and β̄1
′
Ω−1β̄1 = (y−X2∆β)′X1(X ′1X1)−1X ′1(y−

X2∆β) = (y −X2∆β)′PX1(y −X2∆β). The marginal likelihood can be simpli�es as

f(y|a, λ, τ ) = |X ′1X1|−
1
2

∫ ∫
(2π)

−(T+k
Â
−K)

2 (σ2)−
(T+2+k

Â
−K)

2 |gÂΣX |1/2

exp
−1

2σ2
{(y −X2∆β)′(y −X2∆β) + ∆β′gÂΣX∆β − (y −X2∆β)′PX1(y −X2∆β)︸ ︷︷ ︸

C

}d(∆β)dσ2.

Again, focusing on the expression of the exponential, we obtain

C = (y −X2∆β)′(y −X2∆β) + ∆β′gÂΣX∆β − (y −X2∆β)′PX1(y −X2∆β),

= y′[IT − PX1 ]y + ∆β′[gÂX
′
2MX1X2 +X ′2X2 −X ′2PX1X2]∆β − 2∆β′X ′2[IT − PX1 ]y,

= y′MX1y + ∆β′[(1 + gÂ)X ′2MX1X2]∆β − 2∆β′X ′2MX1y,

= y′MX1y + (∆β − µ̄)′Σ̄−1(∆β − µ̄)− µ̄′Σ̄−1µ̄,

where Σ̄−1 = (1 + gÂ)X ′2MX1X2 = (1 + gÂ)ΣX and µ̄ = Σ̄X ′2MX1y, µ̄
′Σ̄−1µ̄ = (1 +

gÂ)−1y′MX1X2[X ′2MX1X2]−1X ′2MX1y.
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Eventually, we �nd the following marginal likelihood

f(y|a, λ, τ ) = (2π)
−(T−K)

2 |X ′1X1|−
1
2 |gÂΣX |1/2|(1 + gÂ)ΣX |

−1
2

∫
(σ2)−

(T+2−K)
2

exp
−1

2σ2
{y′MX1y − (1 + gÂ)−1y′MX1X2[X ′2MX1X2]−1X ′2MX1y}dσ2,

= (π)
−(T−K)

2 Γ(
T −K

2
)|X ′1X1|−

1
2

(
gÂ

1 + gÂ
)kÂ/2[y′MX1y − (1 + gÂ)−1y′MX1X2[X ′2MX1X2]−1X ′2MX1y]−

T−K
2 ,

= (π)
−(T−K)

2 Γ(
T −K

2
)|X ′1X1|−

1
2

(
gÂ

1 + gÂ
)kÂ/2[

gÂ
1 + gÂ

y′MX1y +
1

(1 + gÂ)
[ỹ′ỹ − ỹ′X2[X ′2MX1X2]−1X2ỹ]]−

T−K
2 ,

= (π)
−(T−K)

2 Γ(
T −K

2
)|X ′1X1|−

1
2 (

gÂ
1 + gÂ

)kÂ/2[
gÂ

1 + gÂ
sX1 +

1

(1 + gÂ)
sX1,X2 ]−

T−K
2 ,

where the penultimate equality comes from the Frisch-Waugh theorem.

B.1 Posterior distribution

f(β1,∆β, σ
2|y, τ ) ∝ (2π)

−(T+k
Â

)

2 (σ2)−
(T+2+k

Â
)

2 |gÂ(X2)′MX1X2)|1/2

exp
−1

2σ2

(y −X1β1 −X2∆β)′(y −X1β1 −X2∆β) + ∆β′gÂ(X2)′MX1X2∆β︸ ︷︷ ︸
Exp


Focusing on the expression of the exponential, we have

Exp = (y −X2∆β)′(y −X2∆β) + ∆β′gÂΣX∆β + (β1 − β̄1)′Ω−1(β1 − β̄1)− β̄1
′
Ω−1β̄1,

= y′MX1y − µ̄′Σ̄−1µ̄+ (∆β − µ̄)′Σ̄−1(∆β − µ̄) + (β1 − β̄1)′Ω−1(β1 − β̄1),

=
gÂ

1 + gÂ
sX1 +

1

(1 + gÂ)
sX1,X2 + (∆β − µ̄)′Σ̄−1(∆β − µ̄) + (β1 − β̄1)′Ω−1(β1 − β̄1),

where Σ̄−1 = (1 + gÂ)X ′2MX1X2 = (1 + gÂ)ΣX and µ̄ = Σ̄X ′2MX1y, µ̄
′Σ̄−1µ̄ = (1 +

gÂ)−1y′MX1X2[X ′2MX1X2]−1X ′2MX1y and Ω−1 = X ′1X1, β̄1 = (X ′1X1)−1X ′1(y − X2∆β).
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The posterior distribution can be decomposed as

f(β1,∆β, σ
2|y, τ ) = f(σ2|y, τ )f(∆β|y, τ , σ2)f(β1|y, τ , σ2,∆β)

∝ (σ2)−
(T+2−K)

2 exp
−1

σ2
{

gÂ
1+gÂ

sX1 + 1
(1+gÂ)sX1,X2

2
}

(σ2)−
(k
Â

)

2 |gÂ(X2)′MX1X2)|1/2 exp
−1

2σ2
{(∆β − µ̄)′Σ̄−1(∆β − µ̄)}

(σ2)−
(K)

2 exp
−1

2σ2
{(β1 − β̄1)′Ω−1(β1 − β̄1)}.

It gives the following posterior distribution

σ2|y, τ ∼ IG(
T −K

2
,

gÂ
1+gÂ

sX1 + 1
(1+gÂ)sX1,X2

2
),

∆β|y, τ , σ2 ∼ N ((1 + gÂ)−1[X ′2MX1X2]−1X ′2MX1y, σ
2(1 + gÂ)−1[X ′2MX1X2]−1),

β1|y, τ , σ2,∆β ∼ N ((X ′1X1)−1X ′1(y −X2∆β), σ2(X ′1X1)−1).

B.2 Predictive density

In Appendix B.1, we derive the following posterior distributions:

σ2|y, τ ∼ IG(
T −K

2︸ ︷︷ ︸
aσ2

,

gÂ
1+gÂ

sX1 + 1
(1+gÂ)sX1,X2

2︸ ︷︷ ︸
bσ2

),

∆β|y, τ , σ2 ∼ N ((1 + gÂ)−1[X ′2MX1X2]−1X ′2MX1y︸ ︷︷ ︸
µ∆β

, σ2(1 + gÂ)−1[X ′2MX1X2]−1︸ ︷︷ ︸
Σ∆β

),

β1|y, τ , σ2,∆β ∼ N ((X ′1X1)−1X ′1(y −X2∆β)︸ ︷︷ ︸
µβ

, σ2(X ′1X1)−1︸ ︷︷ ︸
Σβ

).
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Given these results, we can derive the joint posterior distribution of the variable ψ =

 β1

∆β

.
In particular, a standard algebraic calculus leads to

ψ|y, τ , σ2 ∼ N

β̂1 −Bµ∆β

µ∆β

 ,

 Σ−1
β Σ−1

β B

B′Σ−1
β [Σ−1

∆β +B′Σ−1
β B]

−1 ,

∼ N
(
µψ,Σψ

) (B.1)

with β̂1 = (X ′1X1)−1X ′1y and B = (X ′1X1)−1X2. Consequently, the predictive density is

given by

yT+1|y, τ , σ2 ∼ N
(
x′T+1µψ, σ

2(x′T+1ΣψxT+1 + 1)
)
. (B.2)

Since σ2|y, τ follows an inverse gamma distribution, the predictive distribution of yT+1|y is

a student distribution. Its density is given by

f(yT+1|y, τ ) =
b
aσ2

σ2

Γ(aσ2)
(2π(x′T+1ΣψxT+1 + 1))−

1
2∫

(σ2)−(aσ2+1+0.5) exp

(
− 1

σ2
[
(yT+1 − x′T+1µψ)2(x′T+1ΣψxT+1 + 1)−1 + 2bσ2

2
]

)
dσ2,

=
b
aσ2

σ2

Γ(aσ2)
(2π(x′T+1ΣψxT+1 + 1))−

1
2 Γ(aσ2 + 0.5)(

(yT+1 − x′T+1µψ)2(x′T+1ΣψxT+1 + 1)−1 + 2bσ2

2

)−(aσ2+0.5)

,

(B.3)

The �nal expression in Equation (B.3) is equivalent to a student density with expectation

x′T+1µψ, scale parameter
bσ2

aσ2
(x′T+1ΣψxT+1 + 1) and degree of freedom equal to 2aσ2 .

C Consistency of the criterion

To prove the theorem, we focus on the ratio of the criterion for two di�erent models s = (as, λs)

and j = (aj , λj) where s is considered as the true model. To simplify the notation, we denote

by Xz the explanatory variable included by model z (i.e., Xz = XÂz
τ ) for z = s, j and

gÂ = g = 1
w(T ) and write the marginal likelihood as f(y|az, λz) instead of f(y|az, λz, τ ). We
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need to show that
f(y|aj ,λj)
f(y|as,λs) →p 0 for any j 6= s. In particular, we have

f(y|aj , λj)
f(y|as, λs)

=
( g

1+g )
kÂj

/2

( g
1+g )kÂs/2︸ ︷︷ ︸

Cjs

[

g
1+gsX̃τ0

+ 1
(1+g)sX̃τ0 ,Xj

g
1+gsX̃τ0

+ 1
(1+g)sX̃τ0 ,Xs

]−
T−K

2︸ ︷︷ ︸
Djs

.
(C.1)

Focusing on the �rst term, it is easy to show that

Cjs =
(1 + g)kÂs/2

(1 + g)
kÂj

/2
g

k
Âj
−k
Âs

2

=
(1 + w(T )−1)kÂs/2

(1 + w(T )−1)
kÂj

/2
w(T )

k
Âs
−k
Âj

2

= O(w(T )

k
Âs
−k
Âj

2 ).

When T →∞, we have

Cjs = 0 when kÂs < kÂj ,

= 1 if kÂs = kÂj ,

→ +∞ when kÂs > kÂj .

We now discuss three possible cases.

1. kÂs < kÂj and the model j does not nest the model s. In such case, the term Cjs → 0.

The second term also tends to zero since we have

Djs = [

g
1+gsX̃τ0

+ 1
(1+g)sX̃τ0 ,Xs

g
1+gsX̃τ0

+ 1
(1+g)sX̃τ0 ,Xj

]
T−K

2

= [
gsX̃τ0

+ sX̃τ0 ,Xs

gsX̃τ0
+ sX̃τ0 ,Xj

]
T−K

2

Using he fact thatMj does not nestMs and the Frisch-Waugh theorem (see also Lemma

A.1 in Fernandez, Ley, and Steel (2001)), we have that limT→∞
sX̃τ0 ,Xj

T = σ2 + bj with

bj > 0. Combining with the fact that g → 0, we end up with a limit of Djs given by

lim
T→∞

Djs = [
σ2

σ2 + bj
]
T−K

2 → 0.
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2. The model j does not nest the true model but Kj < Ks. In such case, the term

Cjs → +∞. However, we can show that limT→∞Cjsw(T )−
(Ks−Kj)

2
+
Ks−Kj
T−K → 1. Indeed,

we have that

lim
T→∞

Cjsw(T )−
(Ks−Kj)

2
+
Ks−Kj
T−K =

(1 + w(T )−1)kÂs/2

(1 + w(T )−1)
kÂj

/2
w(T )

Ks−Kj
T−K .

Let us de�ne qT = w(T )
Ks−Kj
T−K . We can compute the limit as follows limT→∞w(T )

Ks−Kj
T−K =

limT→∞ exp ln qT . The limit of ln qT is given by

lim
T→∞

qT = lim
T→∞

Ks −Kj

T −K
lnw(T ),

= lim
T→∞

w′(T )

w(T )
(= 0 by assumption).

We conclude that limT→∞w(T )
Ks−Kj
T−K = 1. Now, we need to show thatDjsw(T )

(Ks−Kj)

2
−
Ks−Kj
T−K →

0. In fact, we have

Djsw(T )

(Ks−Kj)

2 (T−K−2)

T−K = lim
T→∞

(
σ2

σ2 + bj︸ ︷︷ ︸
a<1

)
T−K

2 w(T )
(Ks−Kj)

2

= lim
T→∞

w(T )
(Ks−Kj)

2

a−
T−K

2

,

By applying
⌈

(Ks−Kj)
2

⌉
times the Hospital's rule, we �nd that a

T−K
2 dominates and so

Djsw(T )

(Ks−Kj)

2 (T−K−2)

T−K → 0.

3. We now consider the last case in which the model j nests the true model s. Consequently,

we have Ks < Kj and the term Cjs → 0. Regarding the other term, we can express it

as

Djs = [
gsX̃τ0

+ sX̃τ0 ,Xs

gsX̃τ0
+ sX̃τ0 ,Xj

]
T−K

2 ,

= [
sX̃τ0 ,Xs

sX̃τ0 ,Xj

]
T−K

2︸ ︷︷ ︸
Q1

[
As + w(T )

Aj + w(T )
]
T−K

2︸ ︷︷ ︸
Q2

,
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where Ai =
sX̃τ0

sX̃τ0 ,Xi
for i = j, s. It is clear that the �rst term Q1 has a limiting

distribution related to the likelihood ratio test. In fact, we have that

T −K
2

ln
sX̃τ0 ,Xs

sX̃τ0 ,Xj

=
T −K

2T︸ ︷︷ ︸
→ 1

2

T ln
sX̃τ0 ,Xs

sX̃τ0 ,Xj︸ ︷︷ ︸
→dχ2(∆js)

,

→d Gamma(
∆js

2
, 1),

in which ∆js = |Ks−Kj |. Since Y ∼ Gamma(
∆js

2 , 1) isOp(1), we have that Cjs expY →p

0.

Focusing on the second term Q2, using assumption (iii), we have that

T −K
2

ln[
As + w(T )

Aj + w(T )
] =

T −K
2

ln[1 +
As −Aj
Aj + w(T )

],

= Op(
T

w(T )
).

→p [0,∞).

Since Cjs → 0, we conclude that CjsQ1Q2 →p 0.

C.1 Convergence to the BIC

In this appendix, we show that when gÂ = 1
Tα with α > 1, the marginal likelihood given by

f(y|a, λ, τ ) = (
gÂ

1 + gÂ
)kÂ/2[

gÂ
1 + gÂ

sX̃τ0
+

1

(1 + gÂ)
s
X̃τ0 ,X̃

Â
τ

]−
T−K

2 , (C.2)

tends to the same penalty function than the BIC with αkÂ parameters. We have the following

results:

f(y|a, λ, τ ) = T−
αk
Â

2 [
1

Tα
sX̃τ0

+
Tα − 1

Tα
s
X̃τ0 ,X̃

Â
τ

]−
T−K

2 ,

= T−
αk
Â

2 [s
X̃τ0 ,X̃

Â
τ

]−
T−K

2 [
Tα − 1

Tα
]−

T−K
2 [

1

Tα − 1

sX̃τ0

s
X̃τ0 ,X̃

Â
τ

+ 1]−
T−K

2 ,

= T−
αk
Â

2 [s
X̃τ0 ,X̃

Â
τ

]−
T−K

2 [1− 1

Tα
]−

T−K
2︸ ︷︷ ︸

C1

[
1

Tα − 1

sX̃τ0

s
X̃τ0 ,X̃

Â
τ

+ 1]−
T−K

2︸ ︷︷ ︸
C2

,

(C.3)
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We now show that the two quantities, i.e. C1 and C2, tends to 1 when T → +∞:

C1 = exp

(
−T −K

2
ln[1− 1

Tα
]

)
,

→p 1 since α > 1,

C2 = exp

(
−T −K

2
ln[

1

Tα − 1

sX̃τ0

s
X̃τ0 ,X̃

Â
τ

+ 1]

)
,

→p 1 since α > 1 and
sX̃τ0

s
X̃τ0 ,X̃

Â
τ

= Op(1),

ln f(y|a, λ, τ )→p −
T

2
ln s

X̃τ0 ,X̃
Â
τ
−
αkÂ

2
lnT,

= −T
2

ln s
X̃τ0 ,X̃

Â
τ
−
kÂ + m̂Â − 1

2
lnT,

(C.4)

As a consequence, the log of the criterion tends to

ln f(y|a, λ, τ )→p −
T

2
ln s

X̃τ0 ,X̃
Â
τ
−
αkÂ

2
lnT. (C.5)
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D Time-varying parameter model

We also consider a standard time-varying parameter process (see Primiceri (2005)). The

model speci�cation is given by

yt = x′tβ0 + x′tdiag(ω1, ..., ωK)βt + σtεt, (D.1)

βt|βt−1 ∼ N (βt−1, IK), (D.2)

lnσ2
t = lnσ2

t−1 + ηt, (D.3)

where ηt ∼ N (0, q) with q ∼ IG(4, 1.5), (β′0, ω1, ..., ωK) ∼ N (0, I2K) and K stands for the

number of explanatory variables. The model parameters can be estimated with a standard

Markov-chain Monte Carlo (e.g., Bitto and Frühwirth-Schnatter, 2019). In order to take into

account the autocorrelation structure, we use the same lag orders as exposed in Table 4. The

other explanatory variables consist in an intercept and the seven factors.
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